概 述

HanLP 是基于 Java开发的 NLP工具包,由一系列模型与算法组成,目标是普及自然语言处理在生产环境中的应用。而且 HanLP具备功能完善、性能高效、架构清晰、语料时新、可自定义的特点,因此十分好上手,本文就结合 Spring Boot来将 HanLP用起来!

下载 HanLP数据和程序

由于 HanLP库将数据与代码分离,因此我们需要分别下载所需数据和 jar包:

1所需 data数据包下载地址为 data.zip

2所需 jar包下载地址为 hanlp-release.zip

工程搭建

1创建一个普通的 Spring Boot工程,不赘述

2引入 HanLP数据 和 配置

下载完成以后,首先解压 hanlp-release.zip压缩包,然后将解压出的 HanLPjar包引入 Spring Boot工程,然后需要来放置 HanLP所需配置和数据:

1将解压后 hanlp-release.zip压缩包中的 hanlp.properties配置文件置于项目的 resources资源目录下

2然后解压 data.zip压缩包,将解压出的 data目录同样至于 resources目录下( data 中的数据包很重要,是 HanLP工作所需的词典和模型 )

创建 IO适配器

HanLP 提供了IO适配器,用户可以实现其提供的 com.hankcs.hanlp.corpus.io.IIOAdapter 接口以在不同的平台(HDFSRedis等)上运行HanLP,默认的 IO适配器 IOAdapter = com.hankcs.hanlp.corpus.io.FileIOAdapter 是基于普通文件系统的。

接下来我们重写一下 IOAdapter类,使用读写静态资源文件的方法来读取HanLP所需的词典和模型数据( 即resources目录下刚放置的 data目录 )

然后我们配置一下 HanLP的配置文件hanlp.properties,有两处需要改为以下配置:

root=   // 我们不再需要这种指定data目录的方式

IOAdapter=cn.codesheep.springbt_hanlp_userdefine.config.ResourceFileIoAdapter // 指定自定义的IOAdapter

好,现在项目就可以工作了,我们接下来写几个测试用例测试体验一把

实验测试

随便写几个例子来感受一番:

· 分词功能

@Test

public void testSegment() {

    System.out.println( HanLP.segment("www.codesheep.cn是一个技术博客!") );

}

分词结果如下:

[www/nx, ./w, codesheep/nx, ./w, cn/nx, /vshi, 一个/mq, 技术/n, 博客/n, /w]

每个词段后的 /nx/w之类的是 HanLP定义的词性,可以去看 HanLP的接口来获取详情

· 文本推荐

三个关键字的语句推荐结果为:

机器学习  →  [人工智能如今是非常火热的一门技术”]

危机公共  →  [威廉王子发表演说 呼吁保护野生动物]mayun     →  [《时代》年度人物最终入围名单出炉 普京马云入选]

· 关键字提取

@Test

public void testKeyExtract() {

String content = "苹果公司(Apple Inc. )是美国一家高科技公司。由史蒂夫·乔布斯、斯蒂夫·沃兹尼亚克和罗·韦恩(Ron Wayne)等人于1976年4月1日创立," + "并命名为美国苹果电脑公司(Apple Computer Inc. ),2007年1月9日更名为苹果公司,总部位于加利福尼亚州的库比蒂诺。"; List keywordList = HanLP.extractKeyword(content, 5); System.out.println(keywordList);

提取结果为:

[公司, 苹果, 美国, Inc, Apple]

体验一番我们发现其自带的模型、字典等数据给出的实验效果已经是非常不错了,而且用户还可以自定义或修改 data目录下的模型、字典等数据来满足特定需求,因此还是十分强大的。

作者:CodeSheep
來源:简书