stm32 CubeMX v5.6.1使用SD+FATFS+freeRTOS R0.12c

看网上有很多关于新板CubeMX在SD卡上使用FAFTFS系统遇到各种问题,比如有人说新版代码没有调用初始化函数,有的说Platform Setting不配置引脚会导致读写不成功,还有的说4线SDIO的频率要配置成12M,反正就是说新版CubeMX坑。其实只是新版代码较多的使用了结构体和函数指针,把C语言里显而易见的函数调用隐藏起来了,新版代码还是很好用的。下面就演示一下如何配置SDIO(SDMMC同样操作)、FATFS、freeRTOS。
1、开启外部晶振:
stm32 CubeMX v5.6.1使用SD+FATFS+freeRTOS R0.12c_第1张图片
2、配置时基:
stm32 CubeMX v5.6.1使用SD+FATFS+freeRTOS R0.12c_第2张图片
3、开启SDIO或(SDMMC)后,所有参数都不需要修改,只需要打开发送、接收的DMA和SD卡全局中断:

SD卡全局中断:
stm32 CubeMX v5.6.1使用SD+FATFS+freeRTOS R0.12c_第3张图片
4、开启FATFS,把MAX_SS改为4096,以便FATFS系统支持更多参数不同的SD卡,一般设置为512也没什么问题:
stm32 CubeMX v5.6.1使用SD+FATFS+freeRTOS R0.12c_第4张图片
需要在Advanced Settings标签栏里确认一下Use dma template是启用的:
stm32 CubeMX v5.6.1使用SD+FATFS+freeRTOS R0.12c_第5张图片
Platform标签栏可以不用管,没错,确实不用管。
stm32 CubeMX v5.6.1使用SD+FATFS+freeRTOS R0.12c_第6张图片
这根引脚是用来检测SD卡是否已经插入的,具体的检测方法需要用户自己实现,这是来自ST官方的解释:
在这里插入图片描述
咱们看看这个函数体是什么样的:
stm32 CubeMX v5.6.1使用SD+FATFS+freeRTOS R0.12c_第7张图片
这个函数默认返回的就是SD卡已经插好,所以真不用管它了。
5、开启freeRTOS,把堆栈扩大点儿就行了,其它完全默认:
stm32 CubeMX v5.6.1使用SD+FATFS+freeRTOS R0.12c_第8张图片
6、配置时钟树,保证红框内为48M就行:
stm32 CubeMX v5.6.1使用SD+FATFS+freeRTOS R0.12c_第9张图片
7、开启串口1。
7、配置工程名、链接堆栈大小、生成代码:
stm32 CubeMX v5.6.1使用SD+FATFS+freeRTOS R0.12c_第10张图片
8、在main.c中添加重映射printf代码和fatfs测试测试用的代码,其它的文件完全不用改。测试代码在StartDefaultTask里,main.c内容如下:

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * 

© Copyright (c) 2020 STMicroelectronics. * All rights reserved.

* * This software component is licensed by ST under Ultimate Liberty license * SLA0044, the "License"; You may not use this file except in compliance with * the License. You may obtain a copy of the License at: * www.st.com/SLA0044 * ****************************************************************************** */
/* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" #include "cmsis_os.h" #include "fatfs.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ #include #include /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ SD_HandleTypeDef hsd; DMA_HandleTypeDef hdma_sdio_rx; DMA_HandleTypeDef hdma_sdio_tx; UART_HandleTypeDef huart1; osThreadId defaultTaskHandle; /* USER CODE BEGIN PV */ #ifdef __GNUC__ #define PUTCHAR_PROTOTYPE int __io_putchar(int ch) #else #define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f) #endif PUTCHAR_PROTOTYPE { HAL_UART_Transmit(&huart1 , (uint8_t *)&ch, 1, 0xFFFF); return ch; } /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_DMA_Init(void); static void MX_SDIO_SD_Init(void); static void MX_USART1_UART_Init(void); void StartDefaultTask(void const * argument); /* USER CODE BEGIN PFP */ /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ extern uint8_t retSD; /* Return value for SD */ extern char SDPath[4]; /* SD logical drive path */ extern FATFS SDFatFS; /* File system object for SD logical drive */ extern FIL SDFile; /* File object for SD */ FRESULT res; /* FatFs function common result code */ uint32_t byteswritten, bytesread; /* File write/read counts */ uint8_t wtext[] = "this is a SDIO DMA freeRTOS test text"; /* File write buffer */ uint8_t rtext[100]; /* File read buffer */ /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_DMA_Init(); MX_SDIO_SD_Init(); MX_USART1_UART_Init(); MX_FATFS_Init(); /* USER CODE BEGIN 2 */ /* USER CODE END 2 */ /* USER CODE BEGIN RTOS_MUTEX */ /* add mutexes, ... */ /* USER CODE END RTOS_MUTEX */ /* USER CODE BEGIN RTOS_SEMAPHORES */ /* add semaphores, ... */ /* USER CODE END RTOS_SEMAPHORES */ /* USER CODE BEGIN RTOS_TIMERS */ /* start timers, add new ones, ... */ /* USER CODE END RTOS_TIMERS */ /* USER CODE BEGIN RTOS_QUEUES */ /* add queues, ... */ /* USER CODE END RTOS_QUEUES */ /* Create the thread(s) */ /* definition and creation of defaultTask */ osThreadDef(defaultTask, StartDefaultTask, osPriorityNormal, 0, 2048); defaultTaskHandle = osThreadCreate(osThread(defaultTask), NULL); /* USER CODE BEGIN RTOS_THREADS */ /* add threads, ... */ /* USER CODE END RTOS_THREADS */ /* Start scheduler */ osKernelStart(); /* We should never get here as control is now taken by the scheduler */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Configure the main internal regulator output voltage */ __HAL_RCC_PWR_CLK_ENABLE(); __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1); /** Initializes the CPU, AHB and APB busses clocks */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLM = 8; RCC_OscInitStruct.PLL.PLLN = 168; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2; RCC_OscInitStruct.PLL.PLLQ = 7; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB busses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK) { Error_Handler(); } } /** * @brief SDIO Initialization Function * @param None * @retval None */ static void MX_SDIO_SD_Init(void) { /* USER CODE BEGIN SDIO_Init 0 */ /* USER CODE END SDIO_Init 0 */ /* USER CODE BEGIN SDIO_Init 1 */ /* USER CODE END SDIO_Init 1 */ hsd.Instance = SDIO; hsd.Init.ClockEdge = SDIO_CLOCK_EDGE_RISING; hsd.Init.ClockBypass = SDIO_CLOCK_BYPASS_DISABLE; hsd.Init.ClockPowerSave = SDIO_CLOCK_POWER_SAVE_DISABLE; hsd.Init.BusWide = SDIO_BUS_WIDE_1B; hsd.Init.HardwareFlowControl = SDIO_HARDWARE_FLOW_CONTROL_DISABLE; hsd.Init.ClockDiv = 0; /* USER CODE BEGIN SDIO_Init 2 */ /* USER CODE END SDIO_Init 2 */ } /** * @brief USART1 Initialization Function * @param None * @retval None */ static void MX_USART1_UART_Init(void) { /* USER CODE BEGIN USART1_Init 0 */ /* USER CODE END USART1_Init 0 */ /* USER CODE BEGIN USART1_Init 1 */ /* USER CODE END USART1_Init 1 */ huart1.Instance = USART1; huart1.Init.BaudRate = 115200; huart1.Init.WordLength = UART_WORDLENGTH_8B; huart1.Init.StopBits = UART_STOPBITS_1; huart1.Init.Parity = UART_PARITY_NONE; huart1.Init.Mode = UART_MODE_TX_RX; huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart1.Init.OverSampling = UART_OVERSAMPLING_16; if (HAL_UART_Init(&huart1) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN USART1_Init 2 */ /* USER CODE END USART1_Init 2 */ } /** * Enable DMA controller clock */ static void MX_DMA_Init(void) { /* DMA controller clock enable */ __HAL_RCC_DMA2_CLK_ENABLE(); /* DMA interrupt init */ /* DMA2_Stream3_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DMA2_Stream3_IRQn, 5, 0); HAL_NVIC_EnableIRQ(DMA2_Stream3_IRQn); /* DMA2_Stream6_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DMA2_Stream6_IRQn, 5, 0); HAL_NVIC_EnableIRQ(DMA2_Stream6_IRQn); } /** * @brief GPIO Initialization Function * @param None * @retval None */ static void MX_GPIO_Init(void) { /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOH_CLK_ENABLE(); __HAL_RCC_GPIOC_CLK_ENABLE(); __HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_GPIOD_CLK_ENABLE(); } /* USER CODE BEGIN 4 */ /* USER CODE END 4 */ /* USER CODE BEGIN Header_StartDefaultTask */ /** * @brief Function implementing the defaultTask thread. * @param argument: Not used * @retval None */ /* USER CODE END Header_StartDefaultTask */ void StartDefaultTask(void const * argument) { /* USER CODE BEGIN 5 */ /***************************写测试*****************/ if(f_mount(&SDFatFS, (TCHAR const*)SDPath, 0)!=FR_OK) printf("mount err\r\n"); else { printf("mount ok\r\n"); if(f_open(&SDFile, "F429.TXT", FA_CREATE_ALWAYS | FA_WRITE) != FR_OK) { printf("Failed to open Write file\r\n"); } else { printf("Opened Write file successfully\r\n"); //Write data to text file res = f_write(&SDFile, wtext, strlen((char *)wtext), (void *)&byteswritten); if((byteswritten == 0) || (res != FR_OK)) { printf("Failed to write file!\r\n"); } else { printf("File written successfully\r\n"); printf("Write Content: %s\r\n", wtext); } f_close(&SDFile); } /********************读测试*******************/ f_open(&SDFile, "F429.TXT", FA_READ); memset(rtext,0,sizeof(rtext)); res = f_read(&SDFile, rtext, sizeof(rtext), (UINT*)&bytesread); if((bytesread == 0) || (res != FR_OK)) { printf("Failed to read file!\r\n"); } else { printf("File read successfully\r\n"); printf("File content: %s\r\n", (char *)rtext); } f_close(&SDFile); } /* Infinite loop */ for(;;) { osDelay(1); } /* USER CODE END 5 */ } /** * @brief Period elapsed callback in non blocking mode * @note This function is called when TIM7 interrupt took place, inside * HAL_TIM_IRQHandler(). It makes a direct call to HAL_IncTick() to increment * a global variable "uwTick" used as application time base. * @param htim : TIM handle * @retval None */ void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) { /* USER CODE BEGIN Callback 0 */ /* USER CODE END Callback 0 */ if (htim->Instance == TIM7) { HAL_IncTick(); } /* USER CODE BEGIN Callback 1 */ /* USER CODE END Callback 1 */ } /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

9、实验结果:
stm32 CubeMX v5.6.1使用SD+FATFS+freeRTOS R0.12c_第11张图片

SD卡内容:
stm32 CubeMX v5.6.1使用SD+FATFS+freeRTOS R0.12c_第12张图片
/--------------下面是我的小店铺,欢迎有需要的同学来看看--------------/
淘宝小店:芯视界touchgfx

你可能感兴趣的:(stm32,touchgfx)