神经网络在关系抽取中的应用

一、关系抽取简介

信息抽取的主要目的是将非结构化或半结构化描述的自然语言文本转化成结构化数据(Structuring),关系抽取是其重要的子任务,主要负责从文本中识别出实体(Entities),抽取实体之间的语义关系。
如:句子“Bill Gates is the founder of MicrosoftInc.”中包含一个实体对(Bill Gates, Microsoft Inc.),这两个实体对之间的关系为Founder。
神经网络在关系抽取中的应用_第1张图片现有主流的关系抽取技术分为有监督的学习方法、半监督的学习方法和无监督的学习方法三种:

1、有监督的学习方法将关系抽取任务当做分类问题,根据训练数据设计有效的特征,从而学习各种分类模型,然后使用训练好的分类器预测关系。该方法的问题在于需要大量的人工标注训练语料,而语料标注工作通常非常耗时耗力。

2、半监督的学习方法主要采用Bootstrapping进行关系抽取。对于要抽取的关系,该方法首先手工设定若干种子实例,然后迭代地从数据从抽取关系对应的关系模板和更多的实例。

3、无监督的学习方法假设拥有相同语义关系的实体对拥有相似的上下文信息。因此可以利用每个实体对对应上下文信息来代表该实体对的语义关系,并对所有实体对的语义关系进行聚类。

与其他两种方法相比,有监督的学习方法能够抽取更有效的特征,其准确率和召回率都更高。因此有监督的学习方法受到了越来越多学者的关注。

因为NLP中的句子长度是不同的,所以CNN的输入矩阵大小是不确定的,这取决于m的大小是多少。卷积层本质上是个特征抽取层,可以设定超参数F来指定设立多少个特征抽取器(Filter),对于某个Filter来说,可以想象有一个k*d大小的移动窗口从输入矩阵的第一个字开始不断往后移动,其中k是Filter指定的窗口大小,d是Word Embedding长度。对于某个时刻的窗口,通过神经网络的非线性变换,将这个窗口内的输入值转换为某个特征值,随着窗口不断往后移动,这个Filter对应的特征值不断产生,形成这个Filter的特征向量。这就是卷积层抽取特征的过程。每个Filter都如此操作,形成了不同的特征抽取器。Pooling 层则对Filter的特征进行降维操作,形成最终的特征。一般在Pooling层之后连接全联接层神经网络,形成最后的分类过程。

你可能感兴趣的:(神经网络在关系抽取中的应用)