李永乐复习全书高等数学 第三章 一元函数积分学

目录

  • 3.1  不定积分与定积分的概念、性质、理论
    • 例5  设 f ( x ) = { e x , x ⩾ 0 , x x < 0 , g ( x ) = { x sin ⁡ 1 x , x ≠ 0 , 0 , x = 0 , f(x)=\begin{cases}e^x,&x\geqslant0,\\x&x<0,\end{cases}g(x)=\begin{cases}x\sin\cfrac{1}{x},&x\ne0,\\0,&x=0,\end{cases} f(x)={ex,xx0,x<0,g(x)=xsinx1,0,x=0,x=0,下述个命题
      ( 1 ) (1) (1) [ − 1 , 1 ] [-1,1] [1,1] f ( x ) f(x) f(x)存在原函数;
      ( 2 ) (2) (2)存在定积分 ∫ − 1 1 f ( x ) d x \displaystyle\int^1_{-1}f(x)\mathrm{d}x 11f(x)dx
      ( 3 ) (3) (3)存在 g ′ ( 0 ) g'(0) g(0)
      ( 4 ) (4) (4) [ − 1 , 1 ] [-1,1] [1,1] g ( x ) g(x) g(x)存在原函数。
      正确的是(  )
      ( A ) ( 1 ) , ( 2 ) ; (A)(1),(2); (A)(1),(2);
      ( B ) ( 3 ) , ( 4 ) ; (B)(3),(4); (B)(3),(4);
      ( C ) ( 2 ) , ( 4 ) ; (C)(2),(4); (C)(2),(4);
      ( D ) ( 1 ) , ( 3 ) . (D)(1),(3). (D)(1),(3).
  • 3.2  不定积分与定积分的计算
    • 例4  求 ∫ cos ⁡ 2 x − sin ⁡ 2 x cos ⁡ x + sin ⁡ x d x \displaystyle\int\cfrac{\cos2x-\sin2x}{\cos x+\sin x}\mathrm{d}x cosx+sinxcos2xsin2xdx
    • 例6  设常数 a > 0 a>0 a>0,求 ∫ d x x + a 2 − x 2 \displaystyle\int\cfrac{\mathrm{d}x}{x+\sqrt{a^2-x^2}} x+a2x2 dx
    • 例15  求 ∫ − π 4 π 4 x 1 + sin ⁡ x d x \displaystyle\int^{\frac{\pi}{4}}_{-\frac{\pi}{4}}\cfrac{x}{1+\sin x}\mathrm{d}x 4π4π1+sinxxdx
    • 例19  求 ∫ 1 + 2 x 4 x 3 ( 1 + x 4 ) 2 d x \displaystyle\int\cfrac{1+2x^4}{x^3(1+x^4)^2}\mathrm{d}x x3(1+x4)21+2x4dx
  • 3.3  反常积分及其计算与判敛
    • 例7  设 m , n m,n m,n均是正整数,则反常积分 ∫ 0 1 ln ⁡ 2 ( 1 − x ) m x n d x \displaystyle\int^1_0\cfrac{\sqrt[m]{\ln^2(1-x)}}{\sqrt[n]{x}}\mathrm{d}x 01nx mln2(1x) dx的收敛性(  )
      ( A ) (A) (A)仅与 m m m的取值有关;
      ( B ) (B) (B)仅与 n n n的取值有关;
      ( C ) (C) (C) m , n m,n m,n的取值都有关;
      ( D ) (D) (D) m , n m,n m,n的取值都无关。
  • 3.5  定积分的证明题
    • 例10  设 a n = ∫ 0 π 4 tan ⁡ n x d x a_n=\displaystyle\int^{\frac{\pi}{4}}_0\tan^nx\mathrm{d}x an=04πtannxdx,证明 1 2 ( n + 1 ) < a n < 1 2 ( n − 1 ) ( n ⩾ 2 ) \cfrac{1}{2(n+1)}2(n+1)1<an<2(n1)1(n2)
    • 例11  设 n n n为正整数, F ( x ) = ∫ 1 n x e − t 3 d t + ∫ e e ( n + 1 ) x t 2 1 + t 4 d t F(x)=\displaystyle\int^{nx}_1e^{-t^3}\mathrm{d}t+\displaystyle\int^{e^{(n+1)x}}_e\cfrac{t^2}{1+t^4}\mathrm{d}t F(x)=1nxet3dt+ee(n+1)x1+t4t2dt
      • (1)证明:对于给定的正整数 n n n F ( x ) F(x) F(x)有且仅有一个零点,并且为正,记为 x n ( n = 1 , 2 , ⋯   ) x_n(n=1,2,\cdots) xn(n=1,2,)
      • (2)证明:(1)中的 { x n } \{x_n\} {xn}单调递减且 lim ⁡ n → ∞ x n = 0 \lim\limits_{n\to\infty}x_n=0 nlimxn=0
    • 例12  设 f ( x ) f(x) f(x) [ 0 , 1 ] [0,1] [0,1]上连续, ∫ 0 1 f ( x ) d x = 0 \displaystyle\int^1_0f(x)\mathrm{d}x=0 01f(x)dx=0。试证明:至少存在一点 ξ ∈ ( 0 , 1 ) \xi\in(0,1) ξ(0,1),使 ∫ 0 ξ f ( t ) d t = f ( ξ ) \displaystyle\int^\xi_0f(t)\mathrm{d}t=f(\xi) 0ξf(t)dt=f(ξ)
    • 例13  设 f ( x ) f(x) f(x)在区间 [ 0 , 1 ] [0,1] [0,1]上连续,且 ∫ 0 1 f ( x ) d x = c ≠ 0 \displaystyle\int^1_0f(x)\mathrm{d}x=c\ne0 01f(x)dx=c=0。证明:在开区间 ( 0 , 1 ) (0,1) (0,1)内至少存在不同的两点 ξ 1 ∈ ( 0 , 1 ) \xi_1\in(0,1) ξ1(0,1) ξ 2 ∈ ( 0 , 1 ) , ξ 1 ≠ ξ 2 \xi_2\in(0,1),\xi_1\ne\xi_2 ξ2(0,1),ξ1=ξ2,使 1 f ( ξ 1 ) + 1 f ( ξ 2 ) = 2 c \cfrac{1}{f(\xi_1)}+\cfrac{1}{f(\xi_2)}=\cfrac{2}{c} f(ξ1)1+f(ξ2)1=c2
  • 练习三
    • 10.  设 f ( x ) f(x) f(x)在区间 [ 0 , 1 ] [0,1] [0,1]上单调递减且为正值的连续函数,证明 ∫ 0 1 x f 2 ( x ) d x ∫ 0 1 x f ( x ) d x ⩽ ∫ 0 1 f 2 ( x ) d x ∫ 0 1 f ( x ) d x \cfrac{\displaystyle\int^1_0xf^2(x)\mathrm{d}x}{\displaystyle\int^1_0xf(x)\mathrm{d}x}\leqslant\cfrac{\displaystyle\int^1_0f^2(x)\mathrm{d}x}{\displaystyle\int^1_0f(x)\mathrm{d}x} 01xf(x)dx01xf2(x)dx01f(x)dx01f2(x)dx
    • 11.  设 f ( x ) f(x) f(x) [ 0 , 1 ] [0,1] [0,1]上连续。
      • (1)求证:存在 ξ ∈ ( 0 , 1 ) \xi\in(0,1) ξ(0,1),使 ∫ 0 ξ f ( t ) d t = ( 1 − ξ ) f ( ξ ) \displaystyle\int^\xi_0f(t)\mathrm{d}t=(1-\xi)f(\xi) 0ξf(t)dt=(1ξ)f(ξ)
      • (2)若又设 f ( x ) > 0 f(x)>0 f(x)>0 f ( x ) f(x) f(x)单调递减,求证:这种 ξ \xi ξ是唯一的。
  • 写在最后

3.1  不定积分与定积分的概念、性质、理论

例5  设 f ( x ) = { e x , x ⩾ 0 , x x < 0 , g ( x ) = { x sin ⁡ 1 x , x ≠ 0 , 0 , x = 0 , f(x)=\begin{cases}e^x,&x\geqslant0,\\x&x<0,\end{cases}g(x)=\begin{cases}x\sin\cfrac{1}{x},&x\ne0,\\0,&x=0,\end{cases} f(x)={ex,xx0,x<0,g(x)=xsinx1,0,x=0,x=0,下述个命题
( 1 ) (1) (1) [ − 1 , 1 ] [-1,1] [1,1] f ( x ) f(x) f(x)存在原函数;
( 2 ) (2) (2)存在定积分 ∫ − 1 1 f ( x ) d x \displaystyle\int^1_{-1}f(x)\mathrm{d}x 11f(x)dx
( 3 ) (3) (3)存在 g ′ ( 0 ) g'(0) g(0)
( 4 ) (4) (4) [ − 1 , 1 ] [-1,1] [1,1] g ( x ) g(x) g(x)存在原函数。
正确的是(  )
( A ) ( 1 ) , ( 2 ) ; (A)(1),(2); (A)(1),(2);
( B ) ( 3 ) , ( 4 ) ; (B)(3),(4); (B)(3),(4);
( C ) ( 2 ) , ( 4 ) ; (C)(2),(4); (C)(2),(4);
( D ) ( 1 ) , ( 3 ) . (D)(1),(3). (D)(1),(3).

  设 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上连续或在 [ a , b ] [a,b] [a,b]上有界且只有有限个间断点,则 ∫ a b f ( x ) d x \displaystyle\int^b_af(x)\mathrm{d}x abf(x)dx存在。
  设 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上连续,则在 [ a , b ] [a,b] [a,b]上必存在原函数。如果 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上有定义,但不连续,那么 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上就不一定保证存在原函数。如果 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上有跳跃间断点 x 0 ∈ ( a , b ) x_0\in(a,b) x0(a,b),则 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上一定不存在原函数。故选 ( C ) (C) (C)。(这道题主要利用了存在原函数条件求解

3.2  不定积分与定积分的计算

例4  求 ∫ cos ⁡ 2 x − sin ⁡ 2 x cos ⁡ x + sin ⁡ x d x \displaystyle\int\cfrac{\cos2x-\sin2x}{\cos x+\sin x}\mathrm{d}x cosx+sinxcos2xsin2xdx


cos ⁡ 2 x − sin ⁡ 2 x cos ⁡ x + sin ⁡ x = cos ⁡ 2 x − sin ⁡ 2 x − 2 sin ⁡ x cos ⁡ x cos ⁡ x + sin ⁡ x = cos ⁡ x − sin ⁡ x − 2 sin ⁡ x cos ⁡ x + 1 − 1 cos ⁡ x + sin ⁡ x = − 2 sin ⁡ x + 2 2 1 sin ⁡ ( x + π 4 ) , ∫ cos ⁡ 2 x − sin ⁡ 2 x cos ⁡ x + sin ⁡ x d x = 2 cos ⁡ x + 2 2 ln ⁡ ∣ csc ⁡ ( x + π 4 ) − cot ⁡ ( x + π 4 ) ∣ + C . \begin{aligned} \cfrac{\cos2x-\sin2x}{\cos x+\sin x}&=\cfrac{\cos^2x-\sin^2x-2\sin x\cos x}{\cos x+\sin x}\\ &=\cos x-\sin x-\cfrac{2\sin x\cos x+1-1}{\cos x+\sin x}\\ &=-2\sin x+\cfrac{\sqrt{2}}{2}\cfrac{1}{\sin\left(x+\cfrac{\pi}{4}\right)},\\ \displaystyle\int\cfrac{\cos2x-\sin2x}{\cos x+\sin x}\mathrm{d}x&=2\cos x+\cfrac{\sqrt{2}}{2}\ln\left|\csc\left(x+\cfrac{\pi}{4}\right)-\cot\left(x+\cfrac{\pi}{4}\right)\right|+C. \end{aligned} cosx+sinxcos2xsin2xcosx+sinxcos2xsin2xdx=cosx+sinxcos2xsin2x2sinxcosx=cosxsinxcosx+sinx2sinxcosx+11=2sinx+22 sin(x+4π)1,=2cosx+22 lncsc(x+4π)cot(x+4π)+C.
这道题主要利用了拆分函数求解

例6  设常数 a > 0 a>0 a>0,求 ∫ d x x + a 2 − x 2 \displaystyle\int\cfrac{\mathrm{d}x}{x+\sqrt{a^2-x^2}} x+a2x2 dx

  命 x = a sin ⁡ t x=a\sin t x=asint,从而 a 2 − x 2 = a cos ⁡ t , d x = a cos ⁡ t d t \sqrt{a^2-x^2}=a\cos t,\mathrm{d}x=a\cos t\mathrm{d}t a2x2 =acost,dx=acostdt
∫ d x x + a 2 − x 2 = ∫ cos ⁡ t sin ⁡ t + cos ⁡ t d t = 1 2 ∫ ( cos ⁡ t − sin ⁡ t sin ⁡ t + cos ⁡ t + sin ⁡ t + cos ⁡ t sin ⁡ t + cos ⁡ t ) d t = 1 2 ln ⁡ ∣ sin ⁡ t + cos ⁡ t ∣ + 1 2 t + C 1 = 1 2 ln ⁡ ∣ x a + a 2 − x 2 a ∣ + 1 2 arcsin ⁡ x a + C 1 = 1 2 ln ⁡ ∣ x + a 2 − x 2 ∣ + 1 2 arcsin ⁡ x a + C . \begin{aligned} \displaystyle\int\cfrac{\mathrm{d}x}{x+\sqrt{a^2-x^2}}&=\displaystyle\int\cfrac{\cos t}{\sin t+\cos t}\mathrm{d}t\\ &=\cfrac{1}{2}\displaystyle\int\left(\cfrac{\cos t-\sin t}{\sin t+\cos t}+\cfrac{\sin t+\cos t}{\sin t+\cos t}\right)\mathrm{d}t\\ &=\cfrac{1}{2}\ln|\sin t+\cos t|+\cfrac{1}{2}t+C_1\\ &=\cfrac{1}{2}\ln\left|\cfrac{x}{a}+\cfrac{\sqrt{a^2-x^2}}{a}\right|+\cfrac{1}{2}\arcsin\cfrac{x}{a}+C_1\\ &=\cfrac{1}{2}\ln\left|x+\sqrt{a^2-x^2}\right|+\cfrac{1}{2}\arcsin\cfrac{x}{a}+C. \end{aligned} x+a2x2 dx=sint+costcostdt=21(sint+costcostsint+sint+costsint+cost)dt=21lnsint+cost+21t+C1=21lnax+aa2x2 +21arcsinax+C1=21lnx+a2x2 +21arcsinax+C.
  其中,积分式含 a 2 − x 2 \sqrt{a^2-x^2} a2x2 ,命 x = a sin ⁡ t x=a\sin t x=asint;含 x 2 + a 2 \sqrt{x^2+a^2} x2+a2 ,命 x = a tan ⁡ t x=a\tan t x=atant;含 x 2 − a 2 \sqrt{x^2-a^2} x2a2 ,命 x = a sec ⁡ t x=a\sec t x=asect
   C sin ⁡ x + D cos ⁡ x A sin ⁡ x + B cos ⁡ x \cfrac{C\sin x+D\cos x}{A\sin x+B\cos x} Asinx+BcosxCsinx+Dcosx的拆项的一般步骤为
C sin ⁡ x + D cos ⁡ x A sin ⁡ x + B cos ⁡ x = h ( A cos ⁡ x − B sin ⁡ x ) A sin ⁡ x + B cos ⁡ x + k ( A sin ⁡ x + B cos ⁡ x ) A sin ⁡ x + B cos ⁡ x \cfrac{C\sin x+D\cos x}{A\sin x+B\cos x}=\cfrac{h(A\cos x-B\sin x)}{A\sin x+B\cos x}+\cfrac{k(A\sin x+B\cos x)}{A\sin x+B\cos x} Asinx+BcosxCsinx+Dcosx=Asinx+Bcosxh(AcosxBsinx)+Asinx+Bcosxk(Asinx+Bcosx)
  由 { − B h + A k = C , A h + B k = D \begin{cases}-Bh+Ak=C,\\Ah+Bk=D\end{cases} {Bh+Ak=C,Ah+Bk=D定出 h h h k k k。从而
∫ C sin ⁡ x + D cos ⁡ x A sin ⁡ x + B cos ⁡ x d x = h ln ⁡ ∣ A sin ⁡ x + B cos ⁡ x ∣ + k x + C 1 . \displaystyle\int\cfrac{C\sin x+D\cos x}{A\sin x+B\cos x}\mathrm{d}x=h\ln|A\sin x+B\cos x|+kx+C_1. Asinx+BcosxCsinx+Dcosxdx=hlnAsinx+Bcosx+kx+C1.
这道题主要利用了三角函数拆分求解

例15  求 ∫ − π 4 π 4 x 1 + sin ⁡ x d x \displaystyle\int^{\frac{\pi}{4}}_{-\frac{\pi}{4}}\cfrac{x}{1+\sin x}\mathrm{d}x 4π4π1+sinxxdx


∫ − π 4 π 4 x 1 + sin ⁡ x d x = ∫ − π 4 0 x 1 + sin ⁡ x d x + ∫ 0 π 4 x 1 + sin ⁡ x d x = ∫ π 4 0 − t 1 − sin ⁡ t ( − d t ) + ∫ 0 π 4 x 1 + sin ⁡ x d x = ∫ 0 π 4 ( x 1 + sin ⁡ x − x 1 − sin ⁡ x ) d x = ∫ 0 π 4 − 2 x sin ⁡ x 1 − sin ⁡ 2 x d x = − 2 ∫ 0 π 4 x sin ⁡ x cos ⁡ 2 x d x = − 2 ∫ 0 π 4 x d ( 1 cos ⁡ x ) = − 2 [ x cos ⁡ x ∣ 0 π 4 − ∫ 0 π 4 1 cos ⁡ x d x ] = − 2 [ 2 4 π − ln ⁡ ( 2 + 1 ) ] = − 2 2 π + 2 ln ⁡ ( 2 + 1 ) . \begin{aligned} \displaystyle\int^{\frac{\pi}{4}}_{-\frac{\pi}{4}}\cfrac{x}{1+\sin x}\mathrm{d}x&=\displaystyle\int^0_{-\frac{\pi}{4}}\cfrac{x}{1+\sin x}\mathrm{d}x+\displaystyle\int^{\frac{\pi}{4}}_0\cfrac{x}{1+\sin x}\mathrm{d}x\\ &=\displaystyle\int^0_{\frac{\pi}{4}}\cfrac{-t}{1-\sin t}(-\mathrm{d}t)+\displaystyle\int^{\frac{\pi}{4}}_0\cfrac{x}{1+\sin x}\mathrm{d}x\\ &=\displaystyle\int^{\frac{\pi}{4}}_0\left(\cfrac{x}{1+\sin x}-\cfrac{x}{1-\sin x}\right)\mathrm{d}x=\displaystyle\int^{\frac{\pi}{4}}_0\cfrac{-2x\sin x}{1-\sin^2x}\mathrm{d}x\\ &=-2\displaystyle\int^{\frac{\pi}{4}}_0\cfrac{x\sin x}{\cos^2x}\mathrm{d}x=-2\displaystyle\int^{\frac{\pi}{4}}_0x\mathrm{d}\left(\cfrac{1}{\cos x}\right)\\ &=-2\left[\cfrac{x}{\cos x}\biggm\vert^{\frac{\pi}{4}}_0-\displaystyle\int^{\frac{\pi}{4}}_0\cfrac{1}{\cos x}\mathrm{d}x\right]\\ &=-2\left[\cfrac{\sqrt{2}}{4}\pi-\ln(\sqrt{2}+1)\right]=-\cfrac{\sqrt{2}}{2}\pi+2\ln(\sqrt{2}+1). \end{aligned} 4π4π1+sinxxdx=4π01+sinxxdx+04π1+sinxxdx=4π01sintt(dt)+04π1+sinxxdx=04π(1+sinxx1sinxx)dx=04π1sin2x2xsinxdx=204πcos2xxsinxdx=204πxd(cosx1)=2[cosxx04π04πcosx1dx]=2[42 πln(2 +1)]=22 π+2ln(2 +1).
这道题主要利用了偶函数积分求解

例19  求 ∫ 1 + 2 x 4 x 3 ( 1 + x 4 ) 2 d x \displaystyle\int\cfrac{1+2x^4}{x^3(1+x^4)^2}\mathrm{d}x x3(1+x4)21+2x4dx

1 + 2 x 4 x 3 ( 1 + x 4 ) 2 = 1 + x 4 x 3 ( 1 + x 4 ) 2 + x 4 x 3 ( 1 + x 4 ) 2 = 1 x 3 ( 1 + x 4 ) + x ( 1 + x 4 ) 2 = 1 x 3 − x 1 + x 4 + x ( 1 + x 4 ) 2 , ∫ 1 + 2 x 4 x 3 ( 1 + x 4 ) 2 d x = ∫ 1 x 3 − d x − ∫ x 1 + x 4 d x + ∫ x ( 1 + x 4 ) 2 d x = − 1 2 x 2 − 1 2 arctan ⁡ x 2 + 1 2 ∫ 1 ( 1 + ( x 2 ) 2 ) 2 d ( x 2 ) = x 2 = tan ⁡ t − 1 2 x 2 − 1 2 arctan ⁡ x 2 + 1 2 ∫ sec ⁡ 2 t sec ⁡ 4 t d t = − 1 2 x 2 − 1 2 arctan ⁡ x 2 + 1 2 ∫ cos ⁡ 2 t d t = − 1 2 x 2 − 1 2 arctan ⁡ x 2 + 1 4 ( t + 1 2 sin ⁡ 2 t ) + C = − 1 2 x 2 − 1 2 arctan ⁡ x 2 + 1 4 ( t + tan ⁡ t sec ⁡ 2 t ) + C = − 1 2 x 2 − 1 4 arctan ⁡ x 2 + x 2 4 ( 1 + x 4 ) + C \begin{aligned} \cfrac{1+2x^4}{x^3(1+x^4)^2}&=\cfrac{1+x^4}{x^3(1+x^4)^2}+\cfrac{x^4}{x^3(1+x^4)^2}\\ &=\cfrac{1}{x^3(1+x^4)}+\cfrac{x}{(1+x^4)^2}\\ &=\cfrac{1}{x^3}-\cfrac{x}{1+x^4}+\cfrac{x}{(1+x^4)^2}, \end{aligned}\\ \begin{aligned} \displaystyle\int\cfrac{1+2x^4}{x^3(1+x^4)^2}\mathrm{d}x&=\displaystyle\int\cfrac{1}{x^3}-\mathrm{d}x-\displaystyle\int\cfrac{x}{1+x^4}\mathrm{d}x+\displaystyle\int\cfrac{x}{(1+x^4)^2}\mathrm{d}x\\ &=-\cfrac{1}{2x^2}-\cfrac{1}{2}\arctan x^2+\cfrac{1}{2}\displaystyle\int\cfrac{1}{(1+(x^2)^2)^2}\mathrm{d}(x^2)\\ &\xlongequal{x^2=\tan t}-\cfrac{1}{2x^2}-\cfrac{1}{2}\arctan x^2+\cfrac{1}{2}\displaystyle\int\cfrac{\sec^2t}{\sec^4t}\mathrm{d}t\\ &=-\cfrac{1}{2x^2}-\cfrac{1}{2}\arctan x^2+\cfrac{1}{2}\displaystyle\int\cos^2t\mathrm{d}t\\ &=-\cfrac{1}{2x^2}-\cfrac{1}{2}\arctan x^2+\cfrac{1}{4}\left(t+\cfrac{1}{2}\sin2t\right)+C\\ &=-\cfrac{1}{2x^2}-\cfrac{1}{2}\arctan x^2+\cfrac{1}{4}\left(t+\cfrac{\tan t}{\sec^2t}\right)+C\\ &=-\cfrac{1}{2x^2}-\cfrac{1}{4}\arctan x^2+\cfrac{x^2}{4(1+x^4)}+C \end{aligned} x3(1+x4)21+2x4=x3(1+x4)21+x4+x3(1+x4)2x4=x3(1+x4)1+(1+x4)2x=x311+x4x+(1+x4)2x,x3(1+x4)21+2x4dx=x31dx1+x4xdx+(1+x4)2xdx=2x2121arctanx2+21(1+(x2)2)21d(x2)x2=tant 2x2121arctanx2+21sec4tsec2tdt=2x2121arctanx2+21cos2tdt=2x2121arctanx2+41(t+21sin2t)+C=2x2121arctanx2+41(t+sec2ttant)+C=2x2141arctanx2+4(1+x4)x2+C
这道题主要利用了因式分解求解

3.3  反常积分及其计算与判敛

例7  设 m , n m,n m,n均是正整数,则反常积分 ∫ 0 1 ln ⁡ 2 ( 1 − x ) m x n d x \displaystyle\int^1_0\cfrac{\sqrt[m]{\ln^2(1-x)}}{\sqrt[n]{x}}\mathrm{d}x 01nx mln2(1x) dx的收敛性(  )
( A ) (A) (A)仅与 m m m的取值有关;
( B ) (B) (B)仅与 n n n的取值有关;
( C ) (C) (C) m , n m,n m,n的取值都有关;
( D ) (D) (D) m , n m,n m,n的取值都无关。

  命 f ( x ) = ln ⁡ 2 ( 1 − x ) m x n = x − 1 n [ ln ⁡ ( 1 − x ) ] 2 m f(x)=\cfrac{\sqrt[m]{\ln^2(1-x)}}{\sqrt[n]{x}}=x^{-\frac{1}{n}}[\ln(1-x)]^{\frac{2}{m}} f(x)=nx mln2(1x) =xn1[ln(1x)]m2,上限 x = 1 x=1 x=1与下限 x = 0 x=0 x=0都是 f ( x ) f(x) f(x)的瑕点,所以应分别讨论之。先讨论上限 x = 1 x=1 x=1处,当 x → 1 − x\to1^- x1时,对于任意正常数 p p p(不妨认为 0 < p < 1 00<p<1)都有 lim ⁡ x → 1 − ( 1 − x ) p f ( x ) = 0 \lim\limits_{x\to1^-}(1-x)^pf(x)=0 x1lim(1x)pf(x)=0
  由极限的定义,对于 ϵ > 0 \epsilon>0 ϵ>0,存在 δ > 0 \delta>0 δ>0,固定 δ \delta δ,当 1 − δ < x < 1 1-\delta1δ<x<1时, 0 < ( 1 − x ) p f ( x ) < ϵ 0<(1-x)^pf(x)<\epsilon 0<(1x)pf(x)<ϵ,即有 0 < f ( x ) < ϵ ( 1 − x ) p 00<f(x)<(1x)pϵ
  于是当 1 − δ < b < 1 1-\delta1δ<b<1时,有
0 < ∫ 1 − δ b f ( x ) d x < ∫ 1 − δ b ϵ ( 1 − x ) p d x = − ϵ ( 1 − x ) − p + 1 − p + 1 ∣ 1 − δ b = − ϵ ( 1 − b ) − p + 1 − p + 1 + ϵ δ − p + 1 − p + 1 < ϵ δ − p + 1 − p + 1 . \begin{aligned} 0&<\displaystyle\int^b_{1-\delta}f(x)\mathrm{d}x<\displaystyle\int^b_{1-\delta}\cfrac{\epsilon}{(1-x)^p}\mathrm{d}x\\ &=-\cfrac{\epsilon(1-x)^{-p+1}}{-p+1}\biggm\vert^b_{1-\delta}=-\cfrac{\epsilon(1-b)^{-p+1}}{-p+1}+\cfrac{\epsilon\delta^{-p+1}}{-p+1}\\ &<\cfrac{\epsilon\delta^{-p+1}}{-p+1}. \end{aligned} 0<1δbf(x)dx<1δb(1x)pϵdx=p+1ϵ(1x)p+11δb=p+1ϵ(1b)p+1+p+1ϵδp+1<p+1ϵδp+1.
  命 b → 1 − b\to1^- b1 ∫ 1 − δ b f ( x ) d x \displaystyle\int^b_{1-\delta}f(x)\mathrm{d}x 1δbf(x)dx b b b的趋向而单调增加且有上界 ϵ δ − p + 1 − p + 1 \cfrac{\epsilon\delta^{-p+1}}{-p+1} p+1ϵδp+1,所以 lim ⁡ b → 1 − ∫ 1 − δ b f ( x ) d x \lim\limits_{b\to1^-}\displaystyle\int^b_{1-\delta}f(x)\mathrm{d}x b1lim1δbf(x)dx收敛。
  再讨论瑕点 x = 0 x=0 x=0处。为此,只要讨论当 x → 0 + x\to0^+ x0+ f ( x ) f(x) f(x)的等价无穷小的阶即可。
   f ( x ) = ln ⁡ 2 ( 1 − x ) m x n ∼ x → 0 + x 2 m − 1 n f(x)=\cfrac{\sqrt[m]{\ln^2(1-x)}}{\sqrt[n]{x}}\underset{x\to0^+}{\sim}x^{\frac{2}{m}-\frac{1}{n}} f(x)=nx mln2(1x) x0+xm2n1。若 2 m − 1 n ⩾ 0 \cfrac{2}{m}-\cfrac{1}{n}\geqslant0 m2n10,则 x = 0 x=0 x=0可视为 f ( x ) f(x) f(x)的连续点, x = 0 x=0 x=0不是 f ( x ) f(x) f(x)的瑕点。若 2 m − 1 n < 0 \cfrac{2}{m}-\cfrac{1}{n}<0 m2n1<0,因 m , n m,n m,n均为正整数,故 2 m − 1 n > − 1 n ⩾ − 1 \cfrac{2}{m}-\cfrac{1}{n}>-\cfrac{1}{n}\geqslant-1 m2n1>n11。与讨论瑕点 x = 1 x=1 x=1时的同样理由知,此时反常积分 ∫ 0 1 − δ f ( x ) d x \displaystyle\int^{1-\delta}_0f(x)\mathrm{d}x 01δf(x)dx收敛。由 ∫ 0 1 ln ⁡ 2 ( 1 − x ) m x n d x = ∫ 0 1 − δ f ( x ) d x + ∫ 1 − δ 1 f ( x ) d x \displaystyle\int^1_0\cfrac{\sqrt[m]{\ln^2(1-x)}}{\sqrt[n]{x}}\mathrm{d}x=\displaystyle\int^{1-\delta}_0f(x)\mathrm{d}x+\displaystyle\int_{1-\delta}^1f(x)\mathrm{d}x 01nx mln2(1x) dx=01δf(x)dx+1δ1f(x)dx,当 m , n m,n m,n均为正整数时,上述反常积分总收敛,与 m , n m,n m,n具体取值无关,选 ( D ) (D) (D)。(这道题主要利用了反常积分分类讨论求解

3.5  定积分的证明题

例10  设 a n = ∫ 0 π 4 tan ⁡ n x d x a_n=\displaystyle\int^{\frac{\pi}{4}}_0\tan^nx\mathrm{d}x an=04πtannxdx,证明 1 2 ( n + 1 ) < a n < 1 2 ( n − 1 ) ( n ⩾ 2 ) \cfrac{1}{2(n+1)}2(n+1)1<an<2(n1)1(n2)


a 0 = ∫ 0 π 4 1 d x = π 4 . a 1 = ∫ 0 π 4 tan ⁡ n − 2 x tan ⁡ 2 x d x = ∫ 0 π 4 ( sec ⁡ 2 x − 1 ) tan ⁡ n − 2 x d x = ∫ 0 π 4 tan ⁡ n − 2 x d ( tan ⁡ x ) − ∫ 0 π 4 tan ⁡ n − 2 x d x = 1 n − 1 − a n − 2 . ( n ⩾ 2 ) \begin{aligned} a_0&=\displaystyle\int^{\frac{\pi}{4}}_01\mathrm{d}x=\cfrac{\pi}{4}.\\ a_1&=\displaystyle\int^{\frac{\pi}{4}}_0\tan^{n-2}x\tan^2x\mathrm{d}x=\displaystyle\int^{\frac{\pi}{4}}_0(\sec^2x-1)\tan^{n-2}x\mathrm{d}x\\ &=\displaystyle\int^{\frac{\pi}{4}}_0\tan^{n-2}x\mathrm{d}(\tan x)-\displaystyle\int^{\frac{\pi}{4}}_0\tan^{n-2}x\mathrm{d}x\\ &=\cfrac{1}{n-1}-a_{n-2}.(n\geqslant2) \end{aligned} a0a1=04π1dx=4π.=04πtann2xtan2xdx=04π(sec2x1)tann2xdx=04πtann2xd(tanx)04πtann2xdx=n11an2.(n2)
  所以 a n + a n + 2 = 1 n − 1 a_n+a_{n+2}=\cfrac{1}{n-1} an+an+2=n11
  但因 a n < a n − 2 a_nan<an2,所以 1 n − 1 = a n + a n + 2 > 2 a n , a n < 1 2 ( n − 1 ) \cfrac{1}{n-1}=a_n+a_{n+2}>2a_n,a_n<\cfrac{1}{2(n-1)} n11=an+an+2>2an,an<2(n1)1
  又因 a n < a n − 2 a_nan<an2 a n + a n + 2 = 1 n − 1 a_n+a_{n+2}=\cfrac{1}{n-1} an+an+2=n11,所以 2 a n − 2 > a n + a n + 2 = 1 n − 1 , a n − 2 > 1 2 ( n − 1 ) 2a_{n-2}>a_n+a_{n+2}=\cfrac{1}{n-1},a_{n-2}>\cfrac{1}{2(n-1)} 2an2>an+an+2=n11,an2>2(n1)1。从而有 1 2 ( n + 1 ) < a n < 1 2 ( n − 1 ) ( n ⩾ 2 ) \cfrac{1}{2(n+1)}2(n+1)1<an<2(n1)1(n2)。(这道题主要利用了数列递推式求解

例11  设 n n n为正整数, F ( x ) = ∫ 1 n x e − t 3 d t + ∫ e e ( n + 1 ) x t 2 1 + t 4 d t F(x)=\displaystyle\int^{nx}_1e^{-t^3}\mathrm{d}t+\displaystyle\int^{e^{(n+1)x}}_e\cfrac{t^2}{1+t^4}\mathrm{d}t F(x)=1nxet3dt+ee(n+1)x1+t4t2dt

(1)证明:对于给定的正整数 n n n F ( x ) F(x) F(x)有且仅有一个零点,并且为正,记为 x n ( n = 1 , 2 , ⋯   ) x_n(n=1,2,\cdots) xn(n=1,2,)


F ( 1 n + 1 ) = ∫ 1 n n + 1 e − t 3 d t + ∫ e e t 2 1 + t 4 d t < 0 , F ( 1 n ) = ∫ 1 1 e − t 3 d t + ∫ e e n + 1 n t 2 1 + t 4 d t > 0 , F ′ ( x ) = n e − ( n x ) 3 + e 2 ( n + 1 ) x e 4 ( n + 1 ) x + 1 ⋅ e ( n + 1 ) x ( n + 1 ) > 0 , \begin{aligned} &F\left(\cfrac{1}{n+1}\right)=\displaystyle\int^{\frac{n}{n+1}}_1e^{-t^3}\mathrm{d}t+\displaystyle\int^{e}_e\cfrac{t^2}{1+t^4}\mathrm{d}t<0,\\ &F\left(\cfrac{1}{n}\right)=\displaystyle\int^{1}_1e^{-t^3}\mathrm{d}t+\displaystyle\int^{e^{\frac{n+1}{n}}}_e\cfrac{t^2}{1+t^4}\mathrm{d}t>0,\\ &F'(x)=ne^{-(nx)^3}+\cfrac{e^{2(n+1)x}}{e^{4(n+1)x}+1}\cdot e^{(n+1)x}(n+1)>0, \end{aligned} F(n+11)=1n+1net3dt+ee1+t4t2dt<0,F(n1)=11et3dt+eenn+11+t4t2dt>0,F(x)=ne(nx)3+e4(n+1)x+1e2(n+1)xe(n+1)x(n+1)>0,
  所以 F ( x ) F(x) F(x)有且仅有一个零点,并且 1 n + 1 < x n < 1 n \cfrac{1}{n+1}n+11<xn<n1

(2)证明:(1)中的 { x n } \{x_n\} {xn}单调递减且 lim ⁡ n → ∞ x n = 0 \lim\limits_{n\to\infty}x_n=0 nlimxn=0

  由 1 n + 1 < x n < 1 n \cfrac{1}{n+1}n+11<xn<n1,有 1 n + 2 < x n + 1 < 1 n + 1 \cfrac{1}{n+2}n+21<xn+1<n+11,所以 { x n } \{x_n\} {xn}单调递减且 lim ⁡ n → ∞ x n = 0 \lim\limits_{n\to\infty}x_n=0 nlimxn=0。(这道题主要利用了求特解求解

例12  设 f ( x ) f(x) f(x) [ 0 , 1 ] [0,1] [0,1]上连续, ∫ 0 1 f ( x ) d x = 0 \displaystyle\int^1_0f(x)\mathrm{d}x=0 01f(x)dx=0。试证明:至少存在一点 ξ ∈ ( 0 , 1 ) \xi\in(0,1) ξ(0,1),使 ∫ 0 ξ f ( t ) d t = f ( ξ ) \displaystyle\int^\xi_0f(t)\mathrm{d}t=f(\xi) 0ξf(t)dt=f(ξ)

  命 F ( x ) = ∫ 0 x f ( t ) d t F(x)=\displaystyle\int^x_0f(t)\mathrm{d}t F(x)=0xf(t)dt,问题成为证明存在 ξ ∈ ( 0 , 1 ) \xi\in(0,1) ξ(0,1)使 F ( ξ ) − F ′ ( ξ ) = 0 F(\xi)-F'(\xi)=0 F(ξ)F(ξ)=0。命 φ ( x ) = e − x F ( x ) \varphi(x)=e^{-x}F(x) φ(x)=exF(x),有 φ ( 0 ) = F ( 0 ) = 0 , φ ( 1 ) = e − 1 F ( 1 ) = e − 1 ∫ 0 1 f ( x ) d x = 0 \varphi(0)=F(0)=0,\varphi(1)=e^{-1}F(1)=e^{-1}\displaystyle\int^1_0f(x)\mathrm{d}x=0 φ(0)=F(0)=0,φ(1)=e1F(1)=e101f(x)dx=0 φ ( x ) \varphi(x) φ(x) [ 0 , 1 ] [0,1] [0,1]上连续,在 ( 0 , 1 ) (0,1) (0,1)内可导,由罗尔定理知,存在 ξ ∈ ( 0 , 1 ) \xi\in(0,1) ξ(0,1)使 φ ′ ( ξ ) = 0 \varphi'(\xi)=0 φ(ξ)=0,即 F ( ξ ) − F ′ ( ξ ) = 0 F(\xi)-F'(\xi)=0 F(ξ)F(ξ)=0,亦即 ∫ 0 ξ f ( t ) d t = f ( ξ ) \displaystyle\int^\xi_0f(t)\mathrm{d}t=f(\xi) 0ξf(t)dt=f(ξ)。(这道题主要利用了构造函数求解

例13  设 f ( x ) f(x) f(x)在区间 [ 0 , 1 ] [0,1] [0,1]上连续,且 ∫ 0 1 f ( x ) d x = c ≠ 0 \displaystyle\int^1_0f(x)\mathrm{d}x=c\ne0 01f(x)dx=c=0。证明:在开区间 ( 0 , 1 ) (0,1) (0,1)内至少存在不同的两点 ξ 1 ∈ ( 0 , 1 ) \xi_1\in(0,1) ξ1(0,1) ξ 2 ∈ ( 0 , 1 ) , ξ 1 ≠ ξ 2 \xi_2\in(0,1),\xi_1\ne\xi_2 ξ2(0,1),ξ1=ξ2,使 1 f ( ξ 1 ) + 1 f ( ξ 2 ) = 2 c \cfrac{1}{f(\xi_1)}+\cfrac{1}{f(\xi_2)}=\cfrac{2}{c} f(ξ1)1+f(ξ2)1=c2

  命 F ( x ) = 1 c ∫ 0 x f ( t ) d t , x ∈ ( 0 , 1 ] , F ( 0 ) = 0 , F ( 1 ) = 1 F(x)=\cfrac{1}{c}\displaystyle\int^x_0f(t)\mathrm{d}t,x\in(0,1],F(0)=0,F(1)=1 F(x)=c10xf(t)dt,x(0,1],F(0)=0,F(1)=1 F ( x ) F(x) F(x) x ∈ [ 0 , 1 ] x\in[0,1] x[0,1]上的可导函数,由连续函数介值定理知,存在 ξ ∈ ( 0 , 1 ) \xi\in(0,1) ξ(0,1)使 F ( ξ ) = 1 2 F(\xi)=\cfrac{1}{2} F(ξ)=21,即 F ( ξ ) = 1 c ∫ 0 ξ f ( t ) d t = 1 2 , ξ ∈ ( 0 , 1 ) F(\xi)=\cfrac{1}{c}\displaystyle\int^\xi_0f(t)\mathrm{d}t=\cfrac{1}{2},\xi\in(0,1) F(ξ)=c10ξf(t)dt=21,ξ(0,1)
  对 F ( x ) F(x) F(x)在区间 [ 0 , ξ ] [0,\xi] [0,ξ]上及区间 [ ξ , 1 ] [\xi,1] [ξ,1]上分别用拉格朗日中值定理,有
F ′ ( ξ 1 ) ( ξ − 0 ) = F ( ξ ) − F ( 0 ) = 1 2 − 0 = 1 2 , ξ 1 ∈ ( 0 , ξ ) , F ′ ( ξ 2 ) ( 1 − ξ ) = F ( 1 ) − F ( ξ ) = 1 − 1 2 = 1 2 , ξ 1 ∈ ( ξ , 1 ) . F'(\xi_1)(\xi-0)=F(\xi)-F(0)=\cfrac{1}{2}-0=\cfrac{1}{2},\xi_1\in(0,\xi),\\ F'(\xi_2)(1-\xi)=F(1)-F(\xi)=1-\cfrac{1}{2}=\cfrac{1}{2},\xi_1\in(\xi,1). F(ξ1)(ξ0)=F(ξ)F(0)=210=21,ξ1(0,ξ),F(ξ2)(1ξ)=F(1)F(ξ)=121=21,ξ1(ξ,1).
  即
1 c f ( ξ 1 ) ξ = 1 2 , 1 c f ( ξ 2 ) ( 1 − ξ ) = 1 2 , 1 f ( ξ 1 ) = 2 ξ c , 1 f ( ξ 2 ) = 2 ( 1 − ξ ) c , 1 f ( ξ 1 ) + 1 f ( ξ 2 ) = 2 c , 0 < ξ 1 < ξ < ξ 2 < 1. \cfrac{1}{c}f(\xi_1)\xi=\cfrac{1}{2},\cfrac{1}{c}f(\xi_2)(1-\xi)=\cfrac{1}{2},\\ \cfrac{1}{f(\xi_1)}=\cfrac{2\xi}{c},\cfrac{1}{f(\xi_2)}=\cfrac{2(1-\xi)}{c},\\ \cfrac{1}{f(\xi_1)}+\cfrac{1}{f(\xi_2)}=\cfrac{2}{c},0<\xi_1<\xi<\xi_2<1. c1f(ξ1)ξ=21,c1f(ξ2)(1ξ)=21,f(ξ1)1=c2ξ,f(ξ2)1=c2(1ξ),f(ξ1)1+f(ξ2)1=c2,0<ξ1<ξ<ξ2<1.
这道题主要利用了构造函数求解

练习三

10.  设 f ( x ) f(x) f(x)在区间 [ 0 , 1 ] [0,1] [0,1]上单调递减且为正值的连续函数,证明 ∫ 0 1 x f 2 ( x ) d x ∫ 0 1 x f ( x ) d x ⩽ ∫ 0 1 f 2 ( x ) d x ∫ 0 1 f ( x ) d x \cfrac{\displaystyle\int^1_0xf^2(x)\mathrm{d}x}{\displaystyle\int^1_0xf(x)\mathrm{d}x}\leqslant\cfrac{\displaystyle\int^1_0f^2(x)\mathrm{d}x}{\displaystyle\int^1_0f(x)\mathrm{d}x} 01xf(x)dx01xf2(x)dx01f(x)dx01f2(x)dx


∫ 0 1 x f 2 ( x ) d x ∫ 0 1 x f ( x ) d x − ∫ 0 1 f 2 ( x ) d x ∫ 0 1 f ( x ) d x = ∫ 0 1 x f 2 ( x ) d x ∫ 0 1 f ( x ) d x − ∫ 0 1 f 2 ( x ) d x ∫ 0 1 x f ( x ) d x ∫ 0 1 x f ( x ) d x ∫ 0 1 f ( x ) d x . \cfrac{\displaystyle\int^1_0xf^2(x)\mathrm{d}x}{\displaystyle\int^1_0xf(x)\mathrm{d}x}-\cfrac{\displaystyle\int^1_0f^2(x)\mathrm{d}x}{\displaystyle\int^1_0f(x)\mathrm{d}x}=\cfrac{\displaystyle\int^1_0xf^2(x)\mathrm{d}x\displaystyle\int^1_0f(x)\mathrm{d}x-\displaystyle\int^1_0f^2(x)\mathrm{d}x\displaystyle\int^1_0xf(x)\mathrm{d}x}{\displaystyle\int^1_0xf(x)\mathrm{d}x\displaystyle\int^1_0f(x)\mathrm{d}x}. 01xf(x)dx01xf2(x)dx01f(x)dx01f2(x)dx=01xf(x)dx01f(x)dx01xf2(x)dx01f(x)dx01f2(x)dx01xf(x)dx.
  上式右边的分母显然为正,考虑上式的分子,令
F ( x ) = ∫ 0 x t f 2 ( t ) d t ∫ 0 x f ( t ) d t − ∫ 0 x f 2 ( t ) d t ∫ 0 x t f ( t ) d t . F ′ ( x ) = x f 2 ( x ) ∫ 0 x f ( t ) d t + f ( x ) ∫ 0 x t f 2 ( t ) d t − f 2 ( x ) ∫ 0 x t f ( t ) d t − x f ( x ) ∫ 0 x t f 2 ( t ) d t = f 2 ( x ) ∫ 0 x ( x − t ) f ( t ) d t + f ( x ) ∫ 0 x ( t − x ) f 2 ( t ) d t = f ( x ) [ ∫ 0 x ( x − t ) f ( x ) f ( t ) d t − ∫ 0 x ( x − t ) f 2 ( t ) d t ] = f ( x ) ∫ 0 x ( x − t ) ( f ( x ) − f ( t ) ) f ( t ) d t \begin{aligned} F(x)&=\displaystyle\int^x_0tf^2(t)\mathrm{d}t\displaystyle\int^x_0f(t)\mathrm{d}t-\displaystyle\int^x_0f^2(t)\mathrm{d}t\displaystyle\int^x_0tf(t)\mathrm{d}t.\\ F'(x)&=xf^2(x)\displaystyle\int^x_0f(t)\mathrm{d}t+f(x)\displaystyle\int^x_0tf^2(t)\mathrm{d}t-f^2(x)\displaystyle\int^x_0tf(t)\mathrm{d}t-xf(x)\displaystyle\int^x_0tf^2(t)\mathrm{d}t\\ &=f^2(x)\displaystyle\int^x_0(x-t)f(t)\mathrm{d}t+f(x)\displaystyle\int^x_0(t-x)f^2(t)\mathrm{d}t\\ &=f(x)\left[\displaystyle\int^x_0(x-t)f(x)f(t)\mathrm{d}t-\displaystyle\int^x_0(x-t)f^2(t)\mathrm{d}t\right]\\ &=f(x)\displaystyle\int^x_0(x-t)(f(x)-f(t))f(t)\mathrm{d}t \end{aligned} F(x)F(x)=0xtf2(t)dt0xf(t)dt0xf2(t)dt0xtf(t)dt.=xf2(x)0xf(t)dt+f(x)0xtf2(t)dtf2(x)0xtf(t)dtxf(x)0xtf2(t)dt=f2(x)0x(xt)f(t)dt+f(x)0x(tx)f2(t)dt=f(x)[0x(xt)f(x)f(t)dt0x(xt)f2(t)dt]=f(x)0x(xt)(f(x)f(t))f(t)dt
  由于 f ( x ) f(x) f(x)单调减少,所以 ( x − t ) ( f ( x ) − f ( t ) ) ⩽ 0 (x-t)(f(x)-f(t))\leqslant0 (xt)(f(x)f(t))0。因此当 x ⩾ x\geqslant x F ′ ( x ) ⩽ 0 F'(x)\leqslant0 F(x)0。于是 F ( 1 ) ⩽ F ( 0 ) = 0 F(1)\leqslant F(0)=0 F(1)F(0)=0,这就证明了 ∫ 0 1 x f 2 ( x ) d x ∫ 0 1 x f ( x ) d x ⩽ ∫ 0 1 f 2 ( x ) d x ∫ 0 1 f ( x ) d x \cfrac{\displaystyle\int^1_0xf^2(x)\mathrm{d}x}{\displaystyle\int^1_0xf(x)\mathrm{d}x}\leqslant\cfrac{\displaystyle\int^1_0f^2(x)\mathrm{d}x}{\displaystyle\int^1_0f(x)\mathrm{d}x} 01xf(x)dx01xf2(x)dx01f(x)dx01f2(x)dx。(这道题主要利用了构造函数求解

11.  设 f ( x ) f(x) f(x) [ 0 , 1 ] [0,1] [0,1]上连续。

(1)求证:存在 ξ ∈ ( 0 , 1 ) \xi\in(0,1) ξ(0,1),使 ∫ 0 ξ f ( t ) d t = ( 1 − ξ ) f ( ξ ) \displaystyle\int^\xi_0f(t)\mathrm{d}t=(1-\xi)f(\xi) 0ξf(t)dt=(1ξ)f(ξ)

  将 ∫ 0 ξ f ( t ) d t = ( 1 − ξ ) f ( ξ ) \displaystyle\int^\xi_0f(t)\mathrm{d}t=(1-\xi)f(\xi) 0ξf(t)dt=(1ξ)f(ξ)改写为 ∫ 0 ξ f ( t ) d t − ( 1 − ξ ) f ( ξ ) = 0 \displaystyle\int^\xi_0f(t)\mathrm{d}t-(1-\xi)f(\xi)=0 0ξf(t)dt(1ξ)f(ξ)=0。找一个函数 φ ( x ) \varphi(x) φ(x),使 φ ′ ( x ) = ∫ 0 x f ( t ) d t − ( 1 − x ) f ( x ) = ∫ 0 x f ( t ) d t + x f ( x ) − f ( x ) \varphi'(x)=\displaystyle\int^x_0f(t)\mathrm{d}t-(1-x)f(x)=\displaystyle\int^x_0f(t)\mathrm{d}t+xf(x)-f(x) φ(x)=0xf(t)dt(1x)f(x)=0xf(t)dt+xf(x)f(x),且满足 φ ( 0 ) = 0 , φ ( 1 ) = 0 \varphi(0)=0,\varphi(1)=0 φ(0)=0,φ(1)=0,那么对 φ ( x ) \varphi(x) φ(x)用罗尔定理即得所证的式子。容易看出 ( x ∫ 0 x f ( t ) d t ) ′ = ∫ 0 x f ( t ) d t + x f ( x ) \left(x\displaystyle\int^x_0f(t)\mathrm{d}t\right)'=\displaystyle\int^x_0f(t)\mathrm{d}t+xf(x) (x0xf(t)dt)=0xf(t)dt+xf(x)。可见,若取 φ ( x ) = x ∫ 0 x f ( t ) d t − ∫ 0 x f ( t ) d t \varphi(x)=x\displaystyle\int^x_0f(t)\mathrm{d}t-\displaystyle\int^x_0f(t)\mathrm{d}t φ(x)=x0xf(t)dt0xf(t)dt,则有 φ ( 0 ) = 0 , φ ( 1 ) = 0 \varphi(0)=0,\varphi(1)=0 φ(0)=0,φ(1)=0,且 φ ′ ( x ) = ∫ 0 x f ( t ) d t − ( 1 − x ) f ( x ) \varphi'(x)=\displaystyle\int^x_0f(t)\mathrm{d}t-(1-x)f(x) φ(x)=0xf(t)dt(1x)f(x)。由罗尔定理知,存在 ξ ∈ ( 0 , 1 ) \xi\in(0,1) ξ(0,1)使 φ ′ ( ξ ) = 0 \varphi'(\xi)=0 φ(ξ)=0,即 ∫ 0 ξ f ( t ) d t = ( 1 − ξ ) f ( ξ ) \displaystyle\int^\xi_0f(t)\mathrm{d}t=(1-\xi)f(\xi) 0ξf(t)dt=(1ξ)f(ξ)

(2)若又设 f ( x ) > 0 f(x)>0 f(x)>0 f ( x ) f(x) f(x)单调递减,求证:这种 ξ \xi ξ是唯一的。

  若增设 f ( x ) > 0 f(x)>0 f(x)>0 f ( x ) f(x) f(x)单调递减,求证这种 ξ \xi ξ是唯一的。用反证法,若存在 ξ 1 ∈ ( 0 , 1 ) , ξ 2 ∈ ( 0 , 1 ) , ξ 1 ≠ ξ 2 \xi_1\in(0,1),\xi_2\in(0,1),\xi_1\ne\xi_2 ξ1(0,1),ξ2(0,1),ξ1=ξ2,不妨设 0 < ξ 1 < ξ < ξ 2 < 1 0<\xi_1<\xi<\xi_2<1 0<ξ1<ξ<ξ2<1,使 ∫ 0 ξ 1 f ( t ) d t = ( 1 − ξ 1 ) f ( ξ 1 ) , ∫ 0 ξ 2 f ( t ) d t = ( 1 − ξ 2 ) f ( ξ 2 ) \displaystyle\int^{\xi_1}_0f(t)\mathrm{d}t=(1-\xi_1)f(\xi_1),\displaystyle\int^{\xi_2}_0f(t)\mathrm{d}t=(1-\xi_2)f(\xi_2) 0ξ1f(t)dt=(1ξ1)f(ξ1),0ξ2f(t)dt=(1ξ2)f(ξ2)。将后一式减去前一式,得
∫ ξ 1 ξ 2 f ( t ) d t = f ( ξ 2 ) − f ( ξ 1 ) − ξ 2 f ( ξ 2 ) + ξ 1 f ( ξ 1 ) = f ( ξ 2 ) − f ( ξ 1 ) − ξ 2 f ( ξ 2 ) + ξ 2 f ( ξ 1 ) − ξ 2 f ( ξ 1 ) + ξ 1 f ( ξ 1 ) = ( 1 − ξ 2 ) ( f ( ξ 1 ) − f ( ξ 2 ) ) − ( ξ 2 − ξ 1 ) f ( ξ 1 ) . \begin{aligned} \displaystyle\int^{\xi_2}_{\xi_1}f(t)\mathrm{d}t&=f(\xi_2)-f(\xi_1)-\xi_2f(\xi_2)+\xi_1f(\xi_1)\\ &=f(\xi_2)-f(\xi_1)-\xi_2f(\xi_2)+\xi_2f(\xi_1)-\xi_2f(\xi_1)+\xi_1f(\xi_1)\\ &=(1-\xi_2)(f(\xi_1)-f(\xi_2))-(\xi_2-\xi_1)f(\xi_1). \end{aligned} ξ1ξ2f(t)dt=f(ξ2)f(ξ1)ξ2f(ξ2)+ξ1f(ξ1)=f(ξ2)f(ξ1)ξ2f(ξ2)+ξ2f(ξ1)ξ2f(ξ1)+ξ1f(ξ1)=(1ξ2)(f(ξ1)f(ξ2))(ξ2ξ1)f(ξ1).
  由条件左边 > 0 >0 >0,右边 < 0 <0 <0。矛盾。即证得不可能有 ξ 1 ≠ ξ 2 \xi_1\ne\xi_2 ξ1=ξ2。(这道题主要利用了构造函数求解

写在最后

  如果觉得文章不错就点个赞吧。另外,如果有不同的观点,欢迎留言或私信。
   欢迎非商业转载,转载请注明出处。

你可能感兴趣的:(考研数学一高等数学刷题错题记录,#,考研数学一高等数学复习全书)