解 设 f ( x ) f(x) f(x)在 [ a , b ] [a,b] [a,b]上连续或在 [ a , b ] [a,b] [a,b]上有界且只有有限个间断点,则 ∫ a b f ( x ) d x \displaystyle\int^b_af(x)\mathrm{d}x ∫abf(x)dx存在。
设 f ( x ) f(x) f(x)在 [ a , b ] [a,b] [a,b]上连续,则在 [ a , b ] [a,b] [a,b]上必存在原函数。如果 f ( x ) f(x) f(x)在 [ a , b ] [a,b] [a,b]上有定义,但不连续,那么 f ( x ) f(x) f(x)在 [ a , b ] [a,b] [a,b]上就不一定保证存在原函数。如果 f ( x ) f(x) f(x)在 [ a , b ] [a,b] [a,b]上有跳跃间断点 x 0 ∈ ( a , b ) x_0\in(a,b) x0∈(a,b),则 f ( x ) f(x) f(x)在 [ a , b ] [a,b] [a,b]上一定不存在原函数。故选 ( C ) (C) (C)。(这道题主要利用了存在原函数条件求解)
解
cos 2 x − sin 2 x cos x + sin x = cos 2 x − sin 2 x − 2 sin x cos x cos x + sin x = cos x − sin x − 2 sin x cos x + 1 − 1 cos x + sin x = − 2 sin x + 2 2 1 sin ( x + π 4 ) , ∫ cos 2 x − sin 2 x cos x + sin x d x = 2 cos x + 2 2 ln ∣ csc ( x + π 4 ) − cot ( x + π 4 ) ∣ + C . \begin{aligned} \cfrac{\cos2x-\sin2x}{\cos x+\sin x}&=\cfrac{\cos^2x-\sin^2x-2\sin x\cos x}{\cos x+\sin x}\\ &=\cos x-\sin x-\cfrac{2\sin x\cos x+1-1}{\cos x+\sin x}\\ &=-2\sin x+\cfrac{\sqrt{2}}{2}\cfrac{1}{\sin\left(x+\cfrac{\pi}{4}\right)},\\ \displaystyle\int\cfrac{\cos2x-\sin2x}{\cos x+\sin x}\mathrm{d}x&=2\cos x+\cfrac{\sqrt{2}}{2}\ln\left|\csc\left(x+\cfrac{\pi}{4}\right)-\cot\left(x+\cfrac{\pi}{4}\right)\right|+C. \end{aligned} cosx+sinxcos2x−sin2x∫cosx+sinxcos2x−sin2xdx=cosx+sinxcos2x−sin2x−2sinxcosx=cosx−sinx−cosx+sinx2sinxcosx+1−1=−2sinx+22sin(x+4π)1,=2cosx+22ln∣∣∣∣∣csc(x+4π)−cot(x+4π)∣∣∣∣∣+C.
(这道题主要利用了拆分函数求解)
解 命 x = a sin t x=a\sin t x=asint,从而 a 2 − x 2 = a cos t , d x = a cos t d t \sqrt{a^2-x^2}=a\cos t,\mathrm{d}x=a\cos t\mathrm{d}t a2−x2=acost,dx=acostdt,
∫ d x x + a 2 − x 2 = ∫ cos t sin t + cos t d t = 1 2 ∫ ( cos t − sin t sin t + cos t + sin t + cos t sin t + cos t ) d t = 1 2 ln ∣ sin t + cos t ∣ + 1 2 t + C 1 = 1 2 ln ∣ x a + a 2 − x 2 a ∣ + 1 2 arcsin x a + C 1 = 1 2 ln ∣ x + a 2 − x 2 ∣ + 1 2 arcsin x a + C . \begin{aligned} \displaystyle\int\cfrac{\mathrm{d}x}{x+\sqrt{a^2-x^2}}&=\displaystyle\int\cfrac{\cos t}{\sin t+\cos t}\mathrm{d}t\\ &=\cfrac{1}{2}\displaystyle\int\left(\cfrac{\cos t-\sin t}{\sin t+\cos t}+\cfrac{\sin t+\cos t}{\sin t+\cos t}\right)\mathrm{d}t\\ &=\cfrac{1}{2}\ln|\sin t+\cos t|+\cfrac{1}{2}t+C_1\\ &=\cfrac{1}{2}\ln\left|\cfrac{x}{a}+\cfrac{\sqrt{a^2-x^2}}{a}\right|+\cfrac{1}{2}\arcsin\cfrac{x}{a}+C_1\\ &=\cfrac{1}{2}\ln\left|x+\sqrt{a^2-x^2}\right|+\cfrac{1}{2}\arcsin\cfrac{x}{a}+C. \end{aligned} ∫x+a2−x2dx=∫sint+costcostdt=21∫(sint+costcost−sint+sint+costsint+cost)dt=21ln∣sint+cost∣+21t+C1=21ln∣∣∣∣∣ax+aa2−x2∣∣∣∣∣+21arcsinax+C1=21ln∣∣∣x+a2−x2∣∣∣+21arcsinax+C.
其中,积分式含 a 2 − x 2 \sqrt{a^2-x^2} a2−x2,命 x = a sin t x=a\sin t x=asint;含 x 2 + a 2 \sqrt{x^2+a^2} x2+a2,命 x = a tan t x=a\tan t x=atant;含 x 2 − a 2 \sqrt{x^2-a^2} x2−a2,命 x = a sec t x=a\sec t x=asect。
C sin x + D cos x A sin x + B cos x \cfrac{C\sin x+D\cos x}{A\sin x+B\cos x} Asinx+BcosxCsinx+Dcosx的拆项的一般步骤为
C sin x + D cos x A sin x + B cos x = h ( A cos x − B sin x ) A sin x + B cos x + k ( A sin x + B cos x ) A sin x + B cos x \cfrac{C\sin x+D\cos x}{A\sin x+B\cos x}=\cfrac{h(A\cos x-B\sin x)}{A\sin x+B\cos x}+\cfrac{k(A\sin x+B\cos x)}{A\sin x+B\cos x} Asinx+BcosxCsinx+Dcosx=Asinx+Bcosxh(Acosx−Bsinx)+Asinx+Bcosxk(Asinx+Bcosx)
由 { − B h + A k = C , A h + B k = D \begin{cases}-Bh+Ak=C,\\Ah+Bk=D\end{cases} {−Bh+Ak=C,Ah+Bk=D定出 h h h与 k k k。从而
∫ C sin x + D cos x A sin x + B cos x d x = h ln ∣ A sin x + B cos x ∣ + k x + C 1 . \displaystyle\int\cfrac{C\sin x+D\cos x}{A\sin x+B\cos x}\mathrm{d}x=h\ln|A\sin x+B\cos x|+kx+C_1. ∫Asinx+BcosxCsinx+Dcosxdx=hln∣Asinx+Bcosx∣+kx+C1.
(这道题主要利用了三角函数拆分求解)
解
∫ − π 4 π 4 x 1 + sin x d x = ∫ − π 4 0 x 1 + sin x d x + ∫ 0 π 4 x 1 + sin x d x = ∫ π 4 0 − t 1 − sin t ( − d t ) + ∫ 0 π 4 x 1 + sin x d x = ∫ 0 π 4 ( x 1 + sin x − x 1 − sin x ) d x = ∫ 0 π 4 − 2 x sin x 1 − sin 2 x d x = − 2 ∫ 0 π 4 x sin x cos 2 x d x = − 2 ∫ 0 π 4 x d ( 1 cos x ) = − 2 [ x cos x ∣ 0 π 4 − ∫ 0 π 4 1 cos x d x ] = − 2 [ 2 4 π − ln ( 2 + 1 ) ] = − 2 2 π + 2 ln ( 2 + 1 ) . \begin{aligned} \displaystyle\int^{\frac{\pi}{4}}_{-\frac{\pi}{4}}\cfrac{x}{1+\sin x}\mathrm{d}x&=\displaystyle\int^0_{-\frac{\pi}{4}}\cfrac{x}{1+\sin x}\mathrm{d}x+\displaystyle\int^{\frac{\pi}{4}}_0\cfrac{x}{1+\sin x}\mathrm{d}x\\ &=\displaystyle\int^0_{\frac{\pi}{4}}\cfrac{-t}{1-\sin t}(-\mathrm{d}t)+\displaystyle\int^{\frac{\pi}{4}}_0\cfrac{x}{1+\sin x}\mathrm{d}x\\ &=\displaystyle\int^{\frac{\pi}{4}}_0\left(\cfrac{x}{1+\sin x}-\cfrac{x}{1-\sin x}\right)\mathrm{d}x=\displaystyle\int^{\frac{\pi}{4}}_0\cfrac{-2x\sin x}{1-\sin^2x}\mathrm{d}x\\ &=-2\displaystyle\int^{\frac{\pi}{4}}_0\cfrac{x\sin x}{\cos^2x}\mathrm{d}x=-2\displaystyle\int^{\frac{\pi}{4}}_0x\mathrm{d}\left(\cfrac{1}{\cos x}\right)\\ &=-2\left[\cfrac{x}{\cos x}\biggm\vert^{\frac{\pi}{4}}_0-\displaystyle\int^{\frac{\pi}{4}}_0\cfrac{1}{\cos x}\mathrm{d}x\right]\\ &=-2\left[\cfrac{\sqrt{2}}{4}\pi-\ln(\sqrt{2}+1)\right]=-\cfrac{\sqrt{2}}{2}\pi+2\ln(\sqrt{2}+1). \end{aligned} ∫−4π4π1+sinxxdx=∫−4π01+sinxxdx+∫04π1+sinxxdx=∫4π01−sint−t(−dt)+∫04π1+sinxxdx=∫04π(1+sinxx−1−sinxx)dx=∫04π1−sin2x−2xsinxdx=−2∫04πcos2xxsinxdx=−2∫04πxd(cosx1)=−2[cosxx∣∣∣∣04π−∫04πcosx1dx]=−2[42π−ln(2+1)]=−22π+2ln(2+1).
(这道题主要利用了偶函数积分求解)
1 + 2 x 4 x 3 ( 1 + x 4 ) 2 = 1 + x 4 x 3 ( 1 + x 4 ) 2 + x 4 x 3 ( 1 + x 4 ) 2 = 1 x 3 ( 1 + x 4 ) + x ( 1 + x 4 ) 2 = 1 x 3 − x 1 + x 4 + x ( 1 + x 4 ) 2 , ∫ 1 + 2 x 4 x 3 ( 1 + x 4 ) 2 d x = ∫ 1 x 3 − d x − ∫ x 1 + x 4 d x + ∫ x ( 1 + x 4 ) 2 d x = − 1 2 x 2 − 1 2 arctan x 2 + 1 2 ∫ 1 ( 1 + ( x 2 ) 2 ) 2 d ( x 2 ) = x 2 = tan t − 1 2 x 2 − 1 2 arctan x 2 + 1 2 ∫ sec 2 t sec 4 t d t = − 1 2 x 2 − 1 2 arctan x 2 + 1 2 ∫ cos 2 t d t = − 1 2 x 2 − 1 2 arctan x 2 + 1 4 ( t + 1 2 sin 2 t ) + C = − 1 2 x 2 − 1 2 arctan x 2 + 1 4 ( t + tan t sec 2 t ) + C = − 1 2 x 2 − 1 4 arctan x 2 + x 2 4 ( 1 + x 4 ) + C \begin{aligned} \cfrac{1+2x^4}{x^3(1+x^4)^2}&=\cfrac{1+x^4}{x^3(1+x^4)^2}+\cfrac{x^4}{x^3(1+x^4)^2}\\ &=\cfrac{1}{x^3(1+x^4)}+\cfrac{x}{(1+x^4)^2}\\ &=\cfrac{1}{x^3}-\cfrac{x}{1+x^4}+\cfrac{x}{(1+x^4)^2}, \end{aligned}\\ \begin{aligned} \displaystyle\int\cfrac{1+2x^4}{x^3(1+x^4)^2}\mathrm{d}x&=\displaystyle\int\cfrac{1}{x^3}-\mathrm{d}x-\displaystyle\int\cfrac{x}{1+x^4}\mathrm{d}x+\displaystyle\int\cfrac{x}{(1+x^4)^2}\mathrm{d}x\\ &=-\cfrac{1}{2x^2}-\cfrac{1}{2}\arctan x^2+\cfrac{1}{2}\displaystyle\int\cfrac{1}{(1+(x^2)^2)^2}\mathrm{d}(x^2)\\ &\xlongequal{x^2=\tan t}-\cfrac{1}{2x^2}-\cfrac{1}{2}\arctan x^2+\cfrac{1}{2}\displaystyle\int\cfrac{\sec^2t}{\sec^4t}\mathrm{d}t\\ &=-\cfrac{1}{2x^2}-\cfrac{1}{2}\arctan x^2+\cfrac{1}{2}\displaystyle\int\cos^2t\mathrm{d}t\\ &=-\cfrac{1}{2x^2}-\cfrac{1}{2}\arctan x^2+\cfrac{1}{4}\left(t+\cfrac{1}{2}\sin2t\right)+C\\ &=-\cfrac{1}{2x^2}-\cfrac{1}{2}\arctan x^2+\cfrac{1}{4}\left(t+\cfrac{\tan t}{\sec^2t}\right)+C\\ &=-\cfrac{1}{2x^2}-\cfrac{1}{4}\arctan x^2+\cfrac{x^2}{4(1+x^4)}+C \end{aligned} x3(1+x4)21+2x4=x3(1+x4)21+x4+x3(1+x4)2x4=x3(1+x4)1+(1+x4)2x=x31−1+x4x+(1+x4)2x,∫x3(1+x4)21+2x4dx=∫x31−dx−∫1+x4xdx+∫(1+x4)2xdx=−2x21−21arctanx2+21∫(1+(x2)2)21d(x2)x2=tant−2x21−21arctanx2+21∫sec4tsec2tdt=−2x21−21arctanx2+21∫cos2tdt=−2x21−21arctanx2+41(t+21sin2t)+C=−2x21−21arctanx2+41(t+sec2ttant)+C=−2x21−41arctanx2+4(1+x4)x2+C
(这道题主要利用了因式分解求解)
解 命 f ( x ) = ln 2 ( 1 − x ) m x n = x − 1 n [ ln ( 1 − x ) ] 2 m f(x)=\cfrac{\sqrt[m]{\ln^2(1-x)}}{\sqrt[n]{x}}=x^{-\frac{1}{n}}[\ln(1-x)]^{\frac{2}{m}} f(x)=nxmln2(1−x)=x−n1[ln(1−x)]m2,上限 x = 1 x=1 x=1与下限 x = 0 x=0 x=0都是 f ( x ) f(x) f(x)的瑕点,所以应分别讨论之。先讨论上限 x = 1 x=1 x=1处,当 x → 1 − x\to1^- x→1−时,对于任意正常数 p p p(不妨认为 0 < p < 1 0 0<p<1
由极限的定义,对于 ϵ > 0 \epsilon>0 ϵ>0,存在 δ > 0 \delta>0 δ>0,固定 δ \delta δ,当 1 − δ < x < 1 1-\delta
于是当 1 − δ < b < 1 1-\delta1−δ<b<1时,有
0 < ∫ 1 − δ b f ( x ) d x < ∫ 1 − δ b ϵ ( 1 − x ) p d x = − ϵ ( 1 − x ) − p + 1 − p + 1 ∣ 1 − δ b = − ϵ ( 1 − b ) − p + 1 − p + 1 + ϵ δ − p + 1 − p + 1 < ϵ δ − p + 1 − p + 1 . \begin{aligned} 0&<\displaystyle\int^b_{1-\delta}f(x)\mathrm{d}x<\displaystyle\int^b_{1-\delta}\cfrac{\epsilon}{(1-x)^p}\mathrm{d}x\\ &=-\cfrac{\epsilon(1-x)^{-p+1}}{-p+1}\biggm\vert^b_{1-\delta}=-\cfrac{\epsilon(1-b)^{-p+1}}{-p+1}+\cfrac{\epsilon\delta^{-p+1}}{-p+1}\\ &<\cfrac{\epsilon\delta^{-p+1}}{-p+1}. \end{aligned} 0<∫1−δbf(x)dx<∫1−δb(1−x)pϵdx=−−p+1ϵ(1−x)−p+1∣∣∣∣1−δb=−−p+1ϵ(1−b)−p+1+−p+1ϵδ−p+1<−p+1ϵδ−p+1.
命 b → 1 − b\to1^- b→1−, ∫ 1 − δ b f ( x ) d x \displaystyle\int^b_{1-\delta}f(x)\mathrm{d}x ∫1−δbf(x)dx随 b b b的趋向而单调增加且有上界 ϵ δ − p + 1 − p + 1 \cfrac{\epsilon\delta^{-p+1}}{-p+1} −p+1ϵδ−p+1,所以 lim b → 1 − ∫ 1 − δ b f ( x ) d x \lim\limits_{b\to1^-}\displaystyle\int^b_{1-\delta}f(x)\mathrm{d}x b→1−lim∫1−δbf(x)dx收敛。
再讨论瑕点 x = 0 x=0 x=0处。为此,只要讨论当 x → 0 + x\to0^+ x→0+时 f ( x ) f(x) f(x)的等价无穷小的阶即可。
f ( x ) = ln 2 ( 1 − x ) m x n ∼ x → 0 + x 2 m − 1 n f(x)=\cfrac{\sqrt[m]{\ln^2(1-x)}}{\sqrt[n]{x}}\underset{x\to0^+}{\sim}x^{\frac{2}{m}-\frac{1}{n}} f(x)=nxmln2(1−x)x→0+∼xm2−n1。若 2 m − 1 n ⩾ 0 \cfrac{2}{m}-\cfrac{1}{n}\geqslant0 m2−n1⩾0,则 x = 0 x=0 x=0可视为 f ( x ) f(x) f(x)的连续点, x = 0 x=0 x=0不是 f ( x ) f(x) f(x)的瑕点。若 2 m − 1 n < 0 \cfrac{2}{m}-\cfrac{1}{n}<0 m2−n1<0,因 m , n m,n m,n均为正整数,故 2 m − 1 n > − 1 n ⩾ − 1 \cfrac{2}{m}-\cfrac{1}{n}>-\cfrac{1}{n}\geqslant-1 m2−n1>−n1⩾−1。与讨论瑕点 x = 1 x=1 x=1时的同样理由知,此时反常积分 ∫ 0 1 − δ f ( x ) d x \displaystyle\int^{1-\delta}_0f(x)\mathrm{d}x ∫01−δf(x)dx收敛。由 ∫ 0 1 ln 2 ( 1 − x ) m x n d x = ∫ 0 1 − δ f ( x ) d x + ∫ 1 − δ 1 f ( x ) d x \displaystyle\int^1_0\cfrac{\sqrt[m]{\ln^2(1-x)}}{\sqrt[n]{x}}\mathrm{d}x=\displaystyle\int^{1-\delta}_0f(x)\mathrm{d}x+\displaystyle\int_{1-\delta}^1f(x)\mathrm{d}x ∫01nxmln2(1−x)dx=∫01−δf(x)dx+∫1−δ1f(x)dx,当 m , n m,n m,n均为正整数时,上述反常积分总收敛,与 m , n m,n m,n具体取值无关,选 ( D ) (D) (D)。(这道题主要利用了反常积分分类讨论求解)
证
a 0 = ∫ 0 π 4 1 d x = π 4 . a 1 = ∫ 0 π 4 tan n − 2 x tan 2 x d x = ∫ 0 π 4 ( sec 2 x − 1 ) tan n − 2 x d x = ∫ 0 π 4 tan n − 2 x d ( tan x ) − ∫ 0 π 4 tan n − 2 x d x = 1 n − 1 − a n − 2 . ( n ⩾ 2 ) \begin{aligned} a_0&=\displaystyle\int^{\frac{\pi}{4}}_01\mathrm{d}x=\cfrac{\pi}{4}.\\ a_1&=\displaystyle\int^{\frac{\pi}{4}}_0\tan^{n-2}x\tan^2x\mathrm{d}x=\displaystyle\int^{\frac{\pi}{4}}_0(\sec^2x-1)\tan^{n-2}x\mathrm{d}x\\ &=\displaystyle\int^{\frac{\pi}{4}}_0\tan^{n-2}x\mathrm{d}(\tan x)-\displaystyle\int^{\frac{\pi}{4}}_0\tan^{n-2}x\mathrm{d}x\\ &=\cfrac{1}{n-1}-a_{n-2}.(n\geqslant2) \end{aligned} a0a1=∫04π1dx=4π.=∫04πtann−2xtan2xdx=∫04π(sec2x−1)tann−2xdx=∫04πtann−2xd(tanx)−∫04πtann−2xdx=n−11−an−2.(n⩾2)
所以 a n + a n + 2 = 1 n − 1 a_n+a_{n+2}=\cfrac{1}{n-1} an+an+2=n−11。
但因 a n < a n − 2 a_n
又因 a n < a n − 2 a_n
证
F ( 1 n + 1 ) = ∫ 1 n n + 1 e − t 3 d t + ∫ e e t 2 1 + t 4 d t < 0 , F ( 1 n ) = ∫ 1 1 e − t 3 d t + ∫ e e n + 1 n t 2 1 + t 4 d t > 0 , F ′ ( x ) = n e − ( n x ) 3 + e 2 ( n + 1 ) x e 4 ( n + 1 ) x + 1 ⋅ e ( n + 1 ) x ( n + 1 ) > 0 , \begin{aligned} &F\left(\cfrac{1}{n+1}\right)=\displaystyle\int^{\frac{n}{n+1}}_1e^{-t^3}\mathrm{d}t+\displaystyle\int^{e}_e\cfrac{t^2}{1+t^4}\mathrm{d}t<0,\\ &F\left(\cfrac{1}{n}\right)=\displaystyle\int^{1}_1e^{-t^3}\mathrm{d}t+\displaystyle\int^{e^{\frac{n+1}{n}}}_e\cfrac{t^2}{1+t^4}\mathrm{d}t>0,\\ &F'(x)=ne^{-(nx)^3}+\cfrac{e^{2(n+1)x}}{e^{4(n+1)x}+1}\cdot e^{(n+1)x}(n+1)>0, \end{aligned} F(n+11)=∫1n+1ne−t3dt+∫ee1+t4t2dt<0,F(n1)=∫11e−t3dt+∫eenn+11+t4t2dt>0,F′(x)=ne−(nx)3+e4(n+1)x+1e2(n+1)x⋅e(n+1)x(n+1)>0,
所以 F ( x ) F(x) F(x)有且仅有一个零点,并且 1 n + 1 < x n < 1 n \cfrac{1}{n+1}
证 由 1 n + 1 < x n < 1 n \cfrac{1}{n+1}
证 命 F ( x ) = ∫ 0 x f ( t ) d t F(x)=\displaystyle\int^x_0f(t)\mathrm{d}t F(x)=∫0xf(t)dt,问题成为证明存在 ξ ∈ ( 0 , 1 ) \xi\in(0,1) ξ∈(0,1)使 F ( ξ ) − F ′ ( ξ ) = 0 F(\xi)-F'(\xi)=0 F(ξ)−F′(ξ)=0。命 φ ( x ) = e − x F ( x ) \varphi(x)=e^{-x}F(x) φ(x)=e−xF(x),有 φ ( 0 ) = F ( 0 ) = 0 , φ ( 1 ) = e − 1 F ( 1 ) = e − 1 ∫ 0 1 f ( x ) d x = 0 \varphi(0)=F(0)=0,\varphi(1)=e^{-1}F(1)=e^{-1}\displaystyle\int^1_0f(x)\mathrm{d}x=0 φ(0)=F(0)=0,φ(1)=e−1F(1)=e−1∫01f(x)dx=0, φ ( x ) \varphi(x) φ(x)在 [ 0 , 1 ] [0,1] [0,1]上连续,在 ( 0 , 1 ) (0,1) (0,1)内可导,由罗尔定理知,存在 ξ ∈ ( 0 , 1 ) \xi\in(0,1) ξ∈(0,1)使 φ ′ ( ξ ) = 0 \varphi'(\xi)=0 φ′(ξ)=0,即 F ( ξ ) − F ′ ( ξ ) = 0 F(\xi)-F'(\xi)=0 F(ξ)−F′(ξ)=0,亦即 ∫ 0 ξ f ( t ) d t = f ( ξ ) \displaystyle\int^\xi_0f(t)\mathrm{d}t=f(\xi) ∫0ξf(t)dt=f(ξ)。(这道题主要利用了构造函数求解)
证 命 F ( x ) = 1 c ∫ 0 x f ( t ) d t , x ∈ ( 0 , 1 ] , F ( 0 ) = 0 , F ( 1 ) = 1 F(x)=\cfrac{1}{c}\displaystyle\int^x_0f(t)\mathrm{d}t,x\in(0,1],F(0)=0,F(1)=1 F(x)=c1∫0xf(t)dt,x∈(0,1],F(0)=0,F(1)=1。 F ( x ) F(x) F(x)是 x ∈ [ 0 , 1 ] x\in[0,1] x∈[0,1]上的可导函数,由连续函数介值定理知,存在 ξ ∈ ( 0 , 1 ) \xi\in(0,1) ξ∈(0,1)使 F ( ξ ) = 1 2 F(\xi)=\cfrac{1}{2} F(ξ)=21,即 F ( ξ ) = 1 c ∫ 0 ξ f ( t ) d t = 1 2 , ξ ∈ ( 0 , 1 ) F(\xi)=\cfrac{1}{c}\displaystyle\int^\xi_0f(t)\mathrm{d}t=\cfrac{1}{2},\xi\in(0,1) F(ξ)=c1∫0ξf(t)dt=21,ξ∈(0,1)。
对 F ( x ) F(x) F(x)在区间 [ 0 , ξ ] [0,\xi] [0,ξ]上及区间 [ ξ , 1 ] [\xi,1] [ξ,1]上分别用拉格朗日中值定理,有
F ′ ( ξ 1 ) ( ξ − 0 ) = F ( ξ ) − F ( 0 ) = 1 2 − 0 = 1 2 , ξ 1 ∈ ( 0 , ξ ) , F ′ ( ξ 2 ) ( 1 − ξ ) = F ( 1 ) − F ( ξ ) = 1 − 1 2 = 1 2 , ξ 1 ∈ ( ξ , 1 ) . F'(\xi_1)(\xi-0)=F(\xi)-F(0)=\cfrac{1}{2}-0=\cfrac{1}{2},\xi_1\in(0,\xi),\\ F'(\xi_2)(1-\xi)=F(1)-F(\xi)=1-\cfrac{1}{2}=\cfrac{1}{2},\xi_1\in(\xi,1). F′(ξ1)(ξ−0)=F(ξ)−F(0)=21−0=21,ξ1∈(0,ξ),F′(ξ2)(1−ξ)=F(1)−F(ξ)=1−21=21,ξ1∈(ξ,1).
即
1 c f ( ξ 1 ) ξ = 1 2 , 1 c f ( ξ 2 ) ( 1 − ξ ) = 1 2 , 1 f ( ξ 1 ) = 2 ξ c , 1 f ( ξ 2 ) = 2 ( 1 − ξ ) c , 1 f ( ξ 1 ) + 1 f ( ξ 2 ) = 2 c , 0 < ξ 1 < ξ < ξ 2 < 1. \cfrac{1}{c}f(\xi_1)\xi=\cfrac{1}{2},\cfrac{1}{c}f(\xi_2)(1-\xi)=\cfrac{1}{2},\\ \cfrac{1}{f(\xi_1)}=\cfrac{2\xi}{c},\cfrac{1}{f(\xi_2)}=\cfrac{2(1-\xi)}{c},\\ \cfrac{1}{f(\xi_1)}+\cfrac{1}{f(\xi_2)}=\cfrac{2}{c},0<\xi_1<\xi<\xi_2<1. c1f(ξ1)ξ=21,c1f(ξ2)(1−ξ)=21,f(ξ1)1=c2ξ,f(ξ2)1=c2(1−ξ),f(ξ1)1+f(ξ2)1=c2,0<ξ1<ξ<ξ2<1.
(这道题主要利用了构造函数求解)
解
∫ 0 1 x f 2 ( x ) d x ∫ 0 1 x f ( x ) d x − ∫ 0 1 f 2 ( x ) d x ∫ 0 1 f ( x ) d x = ∫ 0 1 x f 2 ( x ) d x ∫ 0 1 f ( x ) d x − ∫ 0 1 f 2 ( x ) d x ∫ 0 1 x f ( x ) d x ∫ 0 1 x f ( x ) d x ∫ 0 1 f ( x ) d x . \cfrac{\displaystyle\int^1_0xf^2(x)\mathrm{d}x}{\displaystyle\int^1_0xf(x)\mathrm{d}x}-\cfrac{\displaystyle\int^1_0f^2(x)\mathrm{d}x}{\displaystyle\int^1_0f(x)\mathrm{d}x}=\cfrac{\displaystyle\int^1_0xf^2(x)\mathrm{d}x\displaystyle\int^1_0f(x)\mathrm{d}x-\displaystyle\int^1_0f^2(x)\mathrm{d}x\displaystyle\int^1_0xf(x)\mathrm{d}x}{\displaystyle\int^1_0xf(x)\mathrm{d}x\displaystyle\int^1_0f(x)\mathrm{d}x}. ∫01xf(x)dx∫01xf2(x)dx−∫01f(x)dx∫01f2(x)dx=∫01xf(x)dx∫01f(x)dx∫01xf2(x)dx∫01f(x)dx−∫01f2(x)dx∫01xf(x)dx.
上式右边的分母显然为正,考虑上式的分子,令
F ( x ) = ∫ 0 x t f 2 ( t ) d t ∫ 0 x f ( t ) d t − ∫ 0 x f 2 ( t ) d t ∫ 0 x t f ( t ) d t . F ′ ( x ) = x f 2 ( x ) ∫ 0 x f ( t ) d t + f ( x ) ∫ 0 x t f 2 ( t ) d t − f 2 ( x ) ∫ 0 x t f ( t ) d t − x f ( x ) ∫ 0 x t f 2 ( t ) d t = f 2 ( x ) ∫ 0 x ( x − t ) f ( t ) d t + f ( x ) ∫ 0 x ( t − x ) f 2 ( t ) d t = f ( x ) [ ∫ 0 x ( x − t ) f ( x ) f ( t ) d t − ∫ 0 x ( x − t ) f 2 ( t ) d t ] = f ( x ) ∫ 0 x ( x − t ) ( f ( x ) − f ( t ) ) f ( t ) d t \begin{aligned} F(x)&=\displaystyle\int^x_0tf^2(t)\mathrm{d}t\displaystyle\int^x_0f(t)\mathrm{d}t-\displaystyle\int^x_0f^2(t)\mathrm{d}t\displaystyle\int^x_0tf(t)\mathrm{d}t.\\ F'(x)&=xf^2(x)\displaystyle\int^x_0f(t)\mathrm{d}t+f(x)\displaystyle\int^x_0tf^2(t)\mathrm{d}t-f^2(x)\displaystyle\int^x_0tf(t)\mathrm{d}t-xf(x)\displaystyle\int^x_0tf^2(t)\mathrm{d}t\\ &=f^2(x)\displaystyle\int^x_0(x-t)f(t)\mathrm{d}t+f(x)\displaystyle\int^x_0(t-x)f^2(t)\mathrm{d}t\\ &=f(x)\left[\displaystyle\int^x_0(x-t)f(x)f(t)\mathrm{d}t-\displaystyle\int^x_0(x-t)f^2(t)\mathrm{d}t\right]\\ &=f(x)\displaystyle\int^x_0(x-t)(f(x)-f(t))f(t)\mathrm{d}t \end{aligned} F(x)F′(x)=∫0xtf2(t)dt∫0xf(t)dt−∫0xf2(t)dt∫0xtf(t)dt.=xf2(x)∫0xf(t)dt+f(x)∫0xtf2(t)dt−f2(x)∫0xtf(t)dt−xf(x)∫0xtf2(t)dt=f2(x)∫0x(x−t)f(t)dt+f(x)∫0x(t−x)f2(t)dt=f(x)[∫0x(x−t)f(x)f(t)dt−∫0x(x−t)f2(t)dt]=f(x)∫0x(x−t)(f(x)−f(t))f(t)dt
由于 f ( x ) f(x) f(x)单调减少,所以 ( x − t ) ( f ( x ) − f ( t ) ) ⩽ 0 (x-t)(f(x)-f(t))\leqslant0 (x−t)(f(x)−f(t))⩽0。因此当 x ⩾ x\geqslant x⩾时 F ′ ( x ) ⩽ 0 F'(x)\leqslant0 F′(x)⩽0。于是 F ( 1 ) ⩽ F ( 0 ) = 0 F(1)\leqslant F(0)=0 F(1)⩽F(0)=0,这就证明了 ∫ 0 1 x f 2 ( x ) d x ∫ 0 1 x f ( x ) d x ⩽ ∫ 0 1 f 2 ( x ) d x ∫ 0 1 f ( x ) d x \cfrac{\displaystyle\int^1_0xf^2(x)\mathrm{d}x}{\displaystyle\int^1_0xf(x)\mathrm{d}x}\leqslant\cfrac{\displaystyle\int^1_0f^2(x)\mathrm{d}x}{\displaystyle\int^1_0f(x)\mathrm{d}x} ∫01xf(x)dx∫01xf2(x)dx⩽∫01f(x)dx∫01f2(x)dx。(这道题主要利用了构造函数求解)
解 将 ∫ 0 ξ f ( t ) d t = ( 1 − ξ ) f ( ξ ) \displaystyle\int^\xi_0f(t)\mathrm{d}t=(1-\xi)f(\xi) ∫0ξf(t)dt=(1−ξ)f(ξ)改写为 ∫ 0 ξ f ( t ) d t − ( 1 − ξ ) f ( ξ ) = 0 \displaystyle\int^\xi_0f(t)\mathrm{d}t-(1-\xi)f(\xi)=0 ∫0ξf(t)dt−(1−ξ)f(ξ)=0。找一个函数 φ ( x ) \varphi(x) φ(x),使 φ ′ ( x ) = ∫ 0 x f ( t ) d t − ( 1 − x ) f ( x ) = ∫ 0 x f ( t ) d t + x f ( x ) − f ( x ) \varphi'(x)=\displaystyle\int^x_0f(t)\mathrm{d}t-(1-x)f(x)=\displaystyle\int^x_0f(t)\mathrm{d}t+xf(x)-f(x) φ′(x)=∫0xf(t)dt−(1−x)f(x)=∫0xf(t)dt+xf(x)−f(x),且满足 φ ( 0 ) = 0 , φ ( 1 ) = 0 \varphi(0)=0,\varphi(1)=0 φ(0)=0,φ(1)=0,那么对 φ ( x ) \varphi(x) φ(x)用罗尔定理即得所证的式子。容易看出 ( x ∫ 0 x f ( t ) d t ) ′ = ∫ 0 x f ( t ) d t + x f ( x ) \left(x\displaystyle\int^x_0f(t)\mathrm{d}t\right)'=\displaystyle\int^x_0f(t)\mathrm{d}t+xf(x) (x∫0xf(t)dt)′=∫0xf(t)dt+xf(x)。可见,若取 φ ( x ) = x ∫ 0 x f ( t ) d t − ∫ 0 x f ( t ) d t \varphi(x)=x\displaystyle\int^x_0f(t)\mathrm{d}t-\displaystyle\int^x_0f(t)\mathrm{d}t φ(x)=x∫0xf(t)dt−∫0xf(t)dt,则有 φ ( 0 ) = 0 , φ ( 1 ) = 0 \varphi(0)=0,\varphi(1)=0 φ(0)=0,φ(1)=0,且 φ ′ ( x ) = ∫ 0 x f ( t ) d t − ( 1 − x ) f ( x ) \varphi'(x)=\displaystyle\int^x_0f(t)\mathrm{d}t-(1-x)f(x) φ′(x)=∫0xf(t)dt−(1−x)f(x)。由罗尔定理知,存在 ξ ∈ ( 0 , 1 ) \xi\in(0,1) ξ∈(0,1)使 φ ′ ( ξ ) = 0 \varphi'(\xi)=0 φ′(ξ)=0,即 ∫ 0 ξ f ( t ) d t = ( 1 − ξ ) f ( ξ ) \displaystyle\int^\xi_0f(t)\mathrm{d}t=(1-\xi)f(\xi) ∫0ξf(t)dt=(1−ξ)f(ξ)。
解 若增设 f ( x ) > 0 f(x)>0 f(x)>0且 f ( x ) f(x) f(x)单调递减,求证这种 ξ \xi ξ是唯一的。用反证法,若存在 ξ 1 ∈ ( 0 , 1 ) , ξ 2 ∈ ( 0 , 1 ) , ξ 1 ≠ ξ 2 \xi_1\in(0,1),\xi_2\in(0,1),\xi_1\ne\xi_2 ξ1∈(0,1),ξ2∈(0,1),ξ1=ξ2,不妨设 0 < ξ 1 < ξ < ξ 2 < 1 0<\xi_1<\xi<\xi_2<1 0<ξ1<ξ<ξ2<1,使 ∫ 0 ξ 1 f ( t ) d t = ( 1 − ξ 1 ) f ( ξ 1 ) , ∫ 0 ξ 2 f ( t ) d t = ( 1 − ξ 2 ) f ( ξ 2 ) \displaystyle\int^{\xi_1}_0f(t)\mathrm{d}t=(1-\xi_1)f(\xi_1),\displaystyle\int^{\xi_2}_0f(t)\mathrm{d}t=(1-\xi_2)f(\xi_2) ∫0ξ1f(t)dt=(1−ξ1)f(ξ1),∫0ξ2f(t)dt=(1−ξ2)f(ξ2)。将后一式减去前一式,得
∫ ξ 1 ξ 2 f ( t ) d t = f ( ξ 2 ) − f ( ξ 1 ) − ξ 2 f ( ξ 2 ) + ξ 1 f ( ξ 1 ) = f ( ξ 2 ) − f ( ξ 1 ) − ξ 2 f ( ξ 2 ) + ξ 2 f ( ξ 1 ) − ξ 2 f ( ξ 1 ) + ξ 1 f ( ξ 1 ) = ( 1 − ξ 2 ) ( f ( ξ 1 ) − f ( ξ 2 ) ) − ( ξ 2 − ξ 1 ) f ( ξ 1 ) . \begin{aligned} \displaystyle\int^{\xi_2}_{\xi_1}f(t)\mathrm{d}t&=f(\xi_2)-f(\xi_1)-\xi_2f(\xi_2)+\xi_1f(\xi_1)\\ &=f(\xi_2)-f(\xi_1)-\xi_2f(\xi_2)+\xi_2f(\xi_1)-\xi_2f(\xi_1)+\xi_1f(\xi_1)\\ &=(1-\xi_2)(f(\xi_1)-f(\xi_2))-(\xi_2-\xi_1)f(\xi_1). \end{aligned} ∫ξ1ξ2f(t)dt=f(ξ2)−f(ξ1)−ξ2f(ξ2)+ξ1f(ξ1)=f(ξ2)−f(ξ1)−ξ2f(ξ2)+ξ2f(ξ1)−ξ2f(ξ1)+ξ1f(ξ1)=(1−ξ2)(f(ξ1)−f(ξ2))−(ξ2−ξ1)f(ξ1).
由条件左边 > 0 >0 >0,右边 < 0 <0 <0。矛盾。即证得不可能有 ξ 1 ≠ ξ 2 \xi_1\ne\xi_2 ξ1=ξ2。(这道题主要利用了构造函数求解)
如果觉得文章不错就点个赞吧。另外,如果有不同的观点,欢迎留言或私信。
欢迎非商业转载,转载请注明出处。