AttPreProcessor
对字段进行预处理,以此来实现“函数”能力分析器认为每一行由空格分隔的每一段为一个列,例如:
120.244.106.255 - - 15/04/2019:01:38:49 +0800 "GET / HTTP/1.1" 302 -
120.244.106.255 - - 15/04/2019:01:38:49 +0800 "GET /auth.do HTTP/1.1" 302 -
120.244.106.255 - - 15/04/2019:01:38:49 +0800 "GET /loginUI.do HTTP/1.1" 302 -
120.244.106.255 - - 15/04/2019:01:39:04 +0800 "GET /loginUI.do HTTP/1.1" 200 13881
120.244.106.255 - - 15/04/2019:01:39:04 +0800 "GET /admin/filee/1ec45f5bfbd718a0e5b93a9 HTTP/1.1" 200 39735
120.244.106.255 - - 15/04/2019:01:39:05 +0800 "GET /img/favicon/favicon.ico HTTP/1.1" 404 1040
120.244.106.255 - - 15/04/2019:01:39:33 +0800 "GET /admin/filee/5f5bfbd718a0e5b93a9 HTTP/1.1" 200 39735
222.137.114.157 - - 15/04/2019:04:27:01 +0800 "GET / HTTP/1.1" 302 -
222.137.114.157 - - 15/04/2019:04:27:02 +0800 "GET / HTTP/1.1" 302 -
222.137.114.157 - - 15/04/2019:04:27:04 +0800 "GET / HTTP/1.1" 302 -
222.137.114.157 - - 15/04/2019:04:27:07 +0800 "GET / HTTP/1.1" 302 -
222.137.114.157 - - 15/04/2019:04:27:14 +0800 "GET / HTTP/1.1" 302 -
205.205.150.10 - - 15/04/2019:07:19:15 +0800 "GET / HTTP/1.1" 302 -
205.205.150.10 - - 15/04/2019:07:19:15 +0800 "GET /auth.do HTTP/1.1" 302 -
205.205.150.10 - - 15/04/2019:07:19:15 +0800 "GET /loginUI.do HTTP/1.1" 302 -
177.93.97.240 - - 15/04/2019:08:22:23 +0800 "GET / HTTP/1.1" 302 -
...
比如第一行,从0开始,各列的值为:
使用分析器进行列选的时候,给出的是行的index。如果某一行按空格split之后,长度不够给定的index,那么这一行就会被忽略。
主要工具类FileScaner
,可以同时指定由逗号分隔的多个路径,并且支持通配符:
scaner = new FileScaner("/usr/local/tomcat/logs/localhost_access_log*.txt,/usr/local/tomcat2/logs/localhost_access_log*.txt");
用where查询状态码为404的访问记录:
@Test
public void testWhere()throws Exception{
scaner.select("0,3,6,8") //选择的列
.where(Conditions.contains("8", "404")) //指定列的筛选条件
.list();
scaner.print();
}
多个查询条件的情况,例如查询状态码为404或者500的访问记录:
@Test
public void testMoreCondition()throws Exception{
scaner.select("0,3,6,8")
.where(Conditions.or(Conditions.eq("8", "404"),Conditions.eq("8", "500")))
.list();
scaner.print();
}
统计404总共出现的次数:
@Test
public void testWhere()throws Exception{
scaner.select("8,count(1)")
.where(Conditions.contains("8", "404"))
.list();
scaner.print();
}
除了count,还支持sum、max、min和avg。这里不再举例。
count中的1其实是没意义的,既不表示列的index,并且写成
count(0)
并不会少计数。其他统计函数则是有意义的,表示的是列的索引。
例如,我们想将日志文件中的时间,去掉秒,只精确到分钟,只需要实现AttPreProcessor接口即可:
@Test
public void testAttPreProcessor()throws Exception{
AttPreProcessor processor = new AttPreProcessor() {
@Override
public String process(String att) {
Date date = DateUtil.parse(att);
if(date==null){
return "";
}
return DateUtil.format(date, "yyyy-MM-dd HH:mm");
}
};
scaner.select("0,3,6")
.processor(3, processor)
.where(Conditions.contains("8", "404"))
.list();
scaner.print();
}
结果类似如下,可以看到秒已经被去掉了:
[120.244.106.255, 2019-03-15 01:39, /img/favicon/favicon.ico]
[216.245.197.254, 2019-03-15 08:32, /robots.txt]
[223.72.82.114, 2019-03-15 13:52, /img/favicon/favicon.ico]
[223.72.82.114, 2019-03-15 15:03, /img/favicon/favicon.ico]
[5.8.55.40, 2019-03-15 16:32, /index.php?x=HelloThinkPHP]
...
使用groupBy来进行分组统计。
注意: groupBy中的索引值是select中的列的的索引值。比如下面的代码中,select的值是“3,count(1)",一个选择了2列,需要以第1列排序,所以需要groupBy("0")
。
@Test
public void testGroupBy()throws Exception{
AttPreProcessor processor = new AttPreProcessor() {
@Override
public String process(String att) {
Date date = DateUtil.parse(att);
if(date==null){
return "";
}
return DateUtil.format(date, "yyyy-MM-dd HH:mm");
}
};
scaner.select("3,count(1)")
.processor(3, processor)
.groupBy("0")
.list();
scaner.print();
}
输出效果:
[2019-03-15 01:38, 14.0]
[2019-03-15 04:27, 10.0]
[2019-03-15 07:19, 6.0]
[2019-03-15 08:22, 2.0]
[2019-03-15 08:32, 2.0]
[2019-03-15 09:28, 34342.0]
[2019-03-15 10:34, 4.0]
[2019-03-15 12:42, 2.0]
...
[2019-03-15 17:16, 20.0]
[2019-03-18 03:29, 1.0]
[2019-03-18 07:45, 1.0]
[2019-03-18 07:55, 1.0]
[2019-03-18 10:25, 47.0]
[2019-03-18 10:25, 2.0]
[2019-03-18 11:04, 1.0]
[2019-03-18 11:34, 376.0]
[2019-03-18 11:44, 6.0]
[2019-03-18 12:47, 2.0]
...
[2019-03-18 17:07, 41503.0]
[2019-03-18 19:09, 1.0]
[2019-03-18 21:08, 2.0]
[2019-03-20 13:42, 1.0]
[2019-03-20 13:42, 1.0]
orderBy中可以有多个排序,排序的index和groupBy同理,是只选择结果的列index。下面的代码按每分钟访问量降序排列:
@Test
public void testOrderBy()throws Exception{
AttPreProcessor processor = new AttPreProcessor() {
@Override
public String process(String att) {
Date date = DateUtil.parse(att);
if(date==null){
return "";
}
return DateUtil.format(date, "yyyy-MM-dd HH:mm");
}
};
scaner.select("3,count(1)")
.processor(3, processor)
.groupBy("0")
.orderBy(OrderBy.desc(1))
.list();
scaner.print();
}
排序结果类似:
[2019-03-18 17:07, 41503.0]
[2019-03-15 09:28, 34342.0]
[2019-03-15 13:52, 582.0]
[2019-03-18 11:34, 376.0]
[2019-03-18 13:48, 267.0]
[2019-03-18 10:25, 47.0]
[2019-03-18 14:16, 33.0]
...
[2019-03-18 14:29, 9.0]
[2019-03-18 14:29, 8.0]
[2019-03-15 07:19, 6.0]
[2019-03-18 11:44, 6.0]
[2019-03-15 10:34, 4.0]
[2019-03-15 14:00, 3.0]
...
如果只关心访问量最高的10个记录,可以这样写:
@Test
public void testLimit()throws Exception{
AttPreProcessor processor = new AttPreProcessor() {
@Override
public String process(String att) {
Date date = DateUtil.parse(att);
if(date==null){
return "";
}
return DateUtil.format(date, "yyyy-MM-dd HH:mm");
}
};
scaner.select("3,count(1)")
.processor(3, processor)
.groupBy("0")
.orderBy(OrderBy.desc(1))
.limit(10)
.list();
scaner.print();
}
输出结果类似:
[2019-03-18 17:07, 41503.0]
[2019-03-15 09:28, 34342.0]
[2019-03-15 13:52, 582.0]
[2019-03-18 11:34, 376.0]
[2019-03-18 13:48, 267.0]
[2019-03-18 10:25, 47.0]
[2019-03-18 14:16, 33.0]
[2019-03-15 17:16, 20.0]
[2019-03-15 01:38, 14.0]
[2019-03-15 16:32, 14.0]
希望对你有用,欢迎讨论。
源码:https://github.com/imhuqiao/log-anlyzer