Channel Pruning for Accelerating Very Deep Neural Networks

https://github.com/yihui-he/channel-pruning

 

ICCV 2017, by Yihui He, Xiangyu Zhang and Jian Sun

Please have a look at AMC: AutoML for Model Compression and Acceleration on Mobile Devices ECCV'18, which combines channel pruning and reinforcement learning to further accelerate CNN.

In this repository, we released code for the following models:

model Speed-up Accuracy
VGG-16 channel pruning 5x 88.1 (Top-5), 67.8 (Top-1)
VGG-16 3C1 4x 89.9 (Top-5), 70.6 (Top-1)
ResNet-50 2x 90.8 (Top-5), 72.3 (Top-1)
faster RCNN 2x 36.7 ([email protected]:.05:.95)
faster RCNN 4x 35.1 ([email protected]:.05:.95)

1 3C method combined spatial decomposition (Speeding up Convolutional Neural Networks with Low Rank Expansions) and channel decomposition (Accelerating Very Deep Convolutional Networks for Classification and Detection) (mentioned in 4.1.2)

Channel Pruning for Accelerating Very Deep Neural Networks_第1张图片 Channel Pruning for Accelerating Very Deep Neural Networks_第2张图片
Structured simplification methods Channel pruning (d)

Citation

If you find the code useful in your research, please consider citing:

@InProceedings{He_2017_ICCV,
author = {He, Yihui and Zhang, Xiangyu and Sun, Jian},
title = {Channel Pruning for Accelerating Very Deep Neural Networks},
booktitle = {The IEEE International Conference on Computer Vision (ICCV)},
month = {Oct},
year = {2017}
}

Contents

  1. Requirements
  2. Installation
  3. Channel Pruning and finetuning
  4. Pruned models for download
  5. Pruning faster RCNN
  6. FAQ

requirements

  1. Python3 packages you might not have: scipysklearneasydict, use sudo pip3 install to install.
  2. For finetuning with 128 batch size, 4 GPUs (~11G of memory)

Installation (sufficient for the demo)

  1. Clone the repository

    # Make sure to clone with --recursive
    git clone --recursive https://github.com/yihui-he/channel-pruning.git
  2. Build my Caffe fork (which support bicubic interpolation and resizing image shorter side to 256 then crop to 224x224)

    cd caffe
    
    # If you're experienced with Caffe and have all of the requirements installed, then simply do:
    make all -j8 && make pycaffe
    # Or follow the Caffe installation instructions here:
    # http://caffe.berkeleyvision.org/installation.html
    
    # you might need to add pycaffe to PYTHONPATH, if you've already had a caffe before
  3. Download ImageNet classification dataset http://www.image-net.org/download-images

  4. Specify imagenet source path in temp/vgg.prototxt (line 12 and 36)

Channel Pruning

For fast testing, you can directly download pruned model. See next section

  1. Download the original VGG-16 modelhttp://www.robots.ox.ac.uk/~vgg/software/very_deep/caffe/VGG_ILSVRC_16_layers.caffemodel
    move it to temp/vgg.caffemodel (or create a softlink instead)

  2. Start Channel Pruning

    python3 train.py -action c3 -caffe [GPU0]
    # or log it with ./run.sh python3 train.py -action c3 -caffe [GPU0]
    # replace [GPU0] with actual GPU device like 0,1 or 2
  3. Combine some factorized layers for further compression, and calculate the acceleration ratio. Replace the ImageData layer of temp/cb_3c_3C4x_mem_bn_vgg.prototxt with temp/vgg.prototxt's

    ./combine.sh | xargs ./calflop.sh
  4. Finetuning

    caffe train -solver temp/solver.prototxt -weights temp/cb_3c_vgg.caffemodel -gpu [GPU0,GPU1,GPU2,GPU3]
    # replace [GPU0,GPU1,GPU2,GPU3] with actual GPU device like 0,1,2,3
  5. Testing

    Though testing is done while finetuning, you can test anytime with:

    caffe test -model path/to/prototxt -weights path/to/caffemodel -iterations 5000 -gpu [GPU0]
    # replace [GPU0] with actual GPU device like 0,1 or 2

Pruned models (for download)

For fast testing, you can directly download pruned model from release: VGG-16 3C 4X, VGG-16 5X, ResNet-50 2X. Or follow Baidu Yun Download link

Test with:

caffe test -model channel_pruning_VGG-16_3C4x.prototxt -weights channel_pruning_VGG-16_3C4x.caffemodel -iterations 5000 -gpu [GPU0]
# replace [GPU0] with actual GPU device like 0,1 or 2

你可能感兴趣的:(深度学习)