- 【AI中数学-概率论-综合实例-包括python实现】 预测的守望者:动态贝叶斯网络在风险预警中的应用
云博士的AI课堂
AI中的数学人工智能概率论python贝叶斯网络机器学习AI数学
第四章:概率论-综合实例第2节预测的守望者:动态贝叶斯网络在风险预警中的应用在许多现实世界的应用中,预测和风险评估通常不仅依赖于静态的输入数据,而是需要考虑时间维度和动态变化。动态贝叶斯网络(DBN,DynamicBayesianNetwork)作为一种扩展了传统贝叶斯网络的工具,可以有效地处理时间序列数据,并进行时序预测。与静态贝叶斯网络不同,DBN能够通过建模系统状态随时间的变化,揭示出更为复
- 【Fabric环境搭建,复制粘贴即可实现】Fabric网络搭建保姆级教程,亲测速通安装
Sao_E
我的小成就fabriclinux区块链信任链
Fabric网络搭建与应用(实现官方文档的资产转移案例)文章目录Fabric网络搭建与应用(实现官方文档的资产转移案例)1.环境准备Git安装安装cURL安装Docker和Docker-compose安装Go2、Fabric源码安装下载源码修改安装脚本执行安装脚本3、启动test-network测试网络1.环境准备本文是基于Vmware和Ubuntu20的Fabric2.5环境搭建Git安装sud
- 基于C++和ONNX Runtime的YOLOv5目标检测实战
浪浪山小白兔
c++YOLO目标检测
1.前言在计算机视觉领域,目标检测是一项关键任务,其应用广泛,涵盖了安防监控、自动驾驶、工业检测等众多领域。YOLOv5作为一种先进的目标检测算法,以其速度快、精度高的特点备受关注。本文将详细介绍如何使用C++结合ONNXRuntime推理引擎来部署YOLOv5模型,实现高效的目标检测。2.ONNX与YOLOv52.1ONNX简介ONNX(OpenNeuralNetworkExchange)是一种
- `Port: Direct Attach Copper` 和 `Port: Twisted Pair`
喝醉酒的小白
Liunx网络
目录标题这些端口类型的来源结论1.**IntelNetworkInterfaceCards(NICs)**2.**Broadcom/AvagoTechnologies**3.**MellanoxTechnologies(现为NVIDIA)**4.**ChelsioCommunications**5.**Realtek**6.**Netgear/TP-Link/ASUS**总结你提到的Port:Di
- drissionpage爬虫自动化入门案例与视频教程与相关代码
十一姐
爬虫自动化drissionpage
目录零、各种关于drissionpage文章视频案例解决方案合集一、dp安装与首次打开网页测试使用二、dp获取网页内容html/text/attr入门三、dp输入点击input/click/eles元素交互等入门四、dp获取cookies信息入门五、dp实现翻页并下载图片入门六、dp实现网页接口数据包监听入门(类似network和fiddler)七、dp实现高并发10倍速度爬取详情页信息八、dp实
- 浅谈我理解的,bug如何定位前后端问题
追星徐小粉
软件测试定位前后端问题linuxnginx
测试,如何定位前后端bug?首先需要清楚知道数据的传输流程:用户在前端页面操作,如点击某个功能,页面携带数据进行请求,访问具体功能接口,由后端服务执行该接口相应的业务逻辑,如涉及数据,后端从数据库取相关信息,并组装数据返回给前端,前端页面进行渲染和展示对应的页面和数据。1接口分析法:抓包或浏览器F12,选择NETWORK网络,选择XHR,JS,WS,Manifest,Other,过滤一些其他内容,
- 【深度学习基础】线性神经网络 | softmax回归的简洁实现
Francek Chen
PyTorch深度学习深度学习神经网络回归softmax人工智能
【作者主页】FrancekChen【专栏介绍】⌈⌈⌈PyTorch深度学习⌋⌋⌋深度学习(DL,DeepLearning)特指基于深层神经网络模型和方法的机器学习。它是在统计机器学习、人工神经网络等算法模型基础上,结合当代大数据和大算力的发展而发展出来的。深度学习最重要的技术特征是具有自动提取特征的能力。神经网络算法、算力和数据是开展深度学习的三要素。深度学习在计算机视觉、自然语言处理、多模态数据
- DCGAN - 深度卷积生成对抗网络:基于卷积神经网络的GAN
池央
生成对抗网络cnn深度学习
深度卷积生成对抗网络(DCGAN,DeepConvolutionalGenerativeAdversarialNetwork)是生成对抗网络(GAN)的一种扩展,它通过使用卷积神经网络(CNN)来实现生成器和判别器的构建。与标准的GAN相比,DCGAN通过引入卷积层来改善图像生成质量,使得生成器能够生成更清晰、更高分辨率的图像。DCGAN提出了一种通过卷积结构来提高图像生成效果的策略,并在多个领域
- 论文笔记 U-Net: Convolutional Networks for Biomedical Image Segmentation
城南皮卡丘
#深度学习caffe人工智能
摘要:人们普遍认为,深度网络的成功训练需要数千个带注释的训练样本。在本文中,我们提出了一种网络和训练策略,该策略依赖于大量使用数据增强来更有效地使用可用的注释样本。该体系结构包括用于捕获上下文的收缩路径和用于实现精确定位的对称扩展路径。我们表明,这样的网络可以从很少的图像进行端到端训练,并且在ISBI挑战中优于先前的最佳方法(滑动窗口卷积网络),用于分割电子显微堆栈中的神经元结构。使用在透射光显微
- multus使用教程
RedCong
Openshiftk8s云原生openshiftk8s云原生
操作步骤如下:1.在vmwarevsphere上配置所有主机使用的端口组安全项Forgedtransmits设置为:AcceptPromiscuousMode设置为:AcceptPromiscuousMode(混杂模式)和ForgedTransmits(伪传输)2.给每台主机添加第二块网卡3.创建网络定义DHCP类型apiVersion:k8s.cni.cncf.io/v1kind:Network
- VPN是什么?高校为什么用?
创意锦囊
网络
虚拟专用网络(VPN):隐私保护与安全上网的利器随着互联网的普及和网络安全威胁的增加,越来越多的人开始关注如何在网上保护自己的隐私和安全。虚拟专用网络(VPN,VirtualPrivateNetwork)作为一种有效的解决方案,正受到广泛关注和使用。本文将详细介绍VPN的工作原理及其优势,帮助您全面了解VPN的功能和应用场景。VPN的工作原理VPN是一种通过加密隧道技术将用户的设备与互联网资源连接
- 深入解析CANN算子开发:TBE与AI CPU算子类型及其开发方法全指南
快撑死的鱼
华为昇腾AscendC的算子开发系统学习人工智能
深入解析CANN算子开发:TBE与AICPU算子类型及其开发方法全指南在现代AI计算领域中,高效的算子开发对于优化深度学习模型的推理与训练至关重要。CANN(ComputeArchitectureforNeuralNetworks)作为华为AscendAI处理器的开发平台,提供了两种类型的算子开发支持:TBE算子和AICPU算子。每种算子类型针对不同的计算任务和硬件架构,开发者需要根据具体场景选择
- 计算机网络 (46)简单网络管理协议SNMP
IT 青年
一研为定计算机网络
前言简单网络管理协议(SNMP,SimpleNetworkManagementProtocol)是一种用于在计算机网络中管理网络节点的标准协议。一、概述SNMP是基于TCP/IP五层协议中的应用层协议,它使网络管理员能够管理网络效能,发现并解决网络问题以及规划网络增长。SNMP由互联网工程任务组(IETF)定义,确保了不同厂商设备之间的互操作性。由于其简单可靠,提供了一种监控和管理网络设备的系统方
- 深入理解 Go 高性能网络框架 nbio
程序员
本文深入探讨了高性能网络框架nbio在Golang中的应用,包括其架构、配置、事件处理机制、核心组件等,并与Evio做了比较。原文:AnalyzingHigh-PerformanceNetworkFrameworknbioinGo前言nbio项目还包括建立在nbio基础上的nbhttp,但这不在我们的讨论范围之内。与evio一样,nbio也采用经典的Reactor模式。事实上,Go中的许多异步网络
- 基于TSN的实时通信网络延迟评估技术
神一样的老师
论文阅读分享网络
论文标题:ATSN-basedTechniqueforReal-TimeLatencyEvaluationinCommunicationNetworks作者信息:AlbertoMorato,ClaudioZunino,ManuelCheminod,StefanoVitturi,来自意大利国家研究委员会,CNR-IEIIT。电子邮件:{alberto.morato,claudio.zunino,ma
- 基于TSN的混合5G网络中的确定性通信研究需求与综述
神一样的老师
论文阅读分享网络
ResearchDemandandReviewonDeterministicCommunicationinHybrid5GnetworksbasedonTSNMahmoudAlqudahUniversityofSiegenSiegen,Germanymahmoud.alqudah@uni-siegen.deRomanObermaisserUniversityofSiegenSiegen,Germa
- 用大数据“喂养”出来的AI模型ChatGPT 爆火是大数据、大算力、强算法的支撑,中国缺乏的什么?
Ai17316391579
深度学习服务器人工智能
先来了解一下ChatGPT的基本情况ChatGPT本质属于生成式人工智能,属于无监督或半监督的机器学习。与之相关的还有Discriminativemodeling区分式模型,区分式模型大多属于监督式学习。生成性人工智能目前有两种主要的框架:GAN(GenerativeAdversarialNetwork)和GPT(GenerativePre-trainedTransformer)。GAN目前广泛应
- Qt Network编程之HTTP请求与处理
努力搬砖的咸鱼
QT新手之路qthttp开发语言
Qt作为一个功能强大的跨平台C++框架,提供了丰富的网络编程支持,特别是针对HTTP请求与处理。本文将深入探讨如何使用QtNetwork模块进行HTTP请求,并处理服务器响应。QtNetwork模块简介QtNetwork模块是Qt框架中负责网络编程的组件。它提供了一系列类来处理网络协议、套接字编程、HTTP/HTTPS请求等。对于HTTP请求与处理,我们主要关注的QNetworkAccessMan
- VYOS容器运行Carbonyl 终端浏览器
GTaylor
carbonyl终端浏览器无处不容器VYOS容器
GitHubhttps://github.com/fathyb/carbonyl手动运行版addcontainerimagefathyb/carbonylsetcontainernamecarbonylallow-host-networkssetcontainernamecarbonylcap-add'net-admin'setcontainernamecarbonylcap-add'net-bi
- BP神经网络概述及其预测的Python和MATLAB实现
追蜻蜓追累了
神经网络回归算法深度学习机器学习启发式算法lstmgru
##一、背景###1.1人工神经网络的起源人工神经网络(ArtificialNeuralNetwork,ANN)受生物神经网络的启发,模拟大脑神经元之间的连接和信息处理方式。尽管早在1943年就有学者如McCulloch和Pitts提出了数学模型,但人工神经网络真正被广泛研究是在20世纪80年代。###1.2BP神经网络的兴起反向传播(BackPropagation,简称BP)算法是20世纪80年
- BP神经网络及其Python和MATLAB实现预测
陈辰学长
神经网络pythonmatlab
BP神经网络及其Python和MATLAB实现预测引言BP神经网络(BackPropagationNeuralNetwork),即反向传播神经网络,是一种通过反向传播算法进行监督学习的多层前馈网络。这种网络能够通过不断地调整和改变神经元的连接权重,达到对特定任务的学习和优化。由于其高度的灵活性和适应性,BP神经网络在模式识别、函数逼近、优化问题等多个领域有着广泛的应用。本文将详细介绍BP神经网络的
- Android Kotlin MVP 架构项目教程
常樱沙Vigour
AndroidKotlinMVP架构项目教程android-kotlin-mvp-architectureThisrepositorycontainsadetailedsampleappthatimplementsMVParchitectureinKotlinusingDagger2,Room,RxJava2,FastAndroidNetworkingandPlaceholderView项目地址:
- 大模型介绍
詹姆斯爱研究Java
spring
大模型(LargeModel)指的是拥有庞大参数量的机器学习模型。由于具有更多的参数,大模型能够更好地拟合复杂的数据和模式,从而提供更准确的预测和更好的性能。大模型的参数量通常远远超过常规模型,可以达到数百万甚至数十亿个参数。这些参数通常通过深度神经网络(DeepNeuralNetwork)来表示,包括多个隐藏层和大量的神经元。大模型的训练需要大量的计算资源和数据。通常,它们需要在多个GPU或TP
- java nat 端口转发_NAT网络地址转换——静态NAT,端口映射(实操!!)
西街以西
javanat端口转发
NAT概述NAT(NetworkAddressTranslation,网络地址转换)是1994年提出的。当在专用网内部的一些主机本来已经分配到了本地IP地址(即仅在本专用网内使用的专用地址),但现在又想和因特网上的主机通信(并不需要加密)时,可使用NAT方法NAT的工作原理借助于NAT,私有(保留)地址的"内部"网络通过路由器发送数据包时,私有地址被转换成合法的IP地址,一个局域网只需使用少量IP
- linux配置nat端口转换,NAT网络地址转换——静态NAT,端口映射(实操!!)
胡大水
linux配置nat端口转换
NAT概述NAT(NetworkAddressTranslation,网络地址转换)是1994年提出的。当在专用网内部的一些主机本来已经分配到了本地IP地址(即仅在本专用网内使用的专用地址),但现在又想和因特网上的主机通信(并不需要加密)时,可使用NAT方法NAT的工作原理借助于NAT,私有(保留)地址的"内部"网络通过路由器发送数据包时,私有地址被转换成合法的IP地址,一个局域网只需使用少量IP
- 无限流量卡与无线网络跑pcdn
黑石云
边缘计算
对于无限流量卡和无线网络是否可以用于PCDN(PeerContentDeliveryNetwork,即点对点内容分发网络)的问题,以下是对两者的详细分析:无限流量卡理论可行性:无限流量卡提供了理论上不受限制的数据使用量,这看似满足了PCDN需要大量数据传输的需求。然而,需要注意的是,尽管流量是无限的,但运营商可能会对上传速度或上传量进行限制,以防止滥用。实际操作:无限流量卡的实际使用效果可能受到运
- wandb 网络连接问题解决指南
星之所望
wandb
背景我们都知道wandb是非常好用的可视化工具,但是国内这个环境,网络不通畅,使用时常常会无法同步数据,在使用校园网的情况下尤为明显。这里提供了一种解决思路。环境windows10pycharm校园网wifi报错内容运行训练代码时出现以下错误wandb:Networkerror(TransientError),enteringretryloop.解决办法需要挂代理,这里用的是clashforwin
- wandb
羊羊12312额3
python
PSE:\GitHub\yolov5-6.0>wandbinitLet'ssetupthisdirectoryforW&B!wandb:Networkerror(ProxyError),enteringretryloop.Aborted!PSE:\GitHub\yolov5-6.0>wandbinitLet'ssetupthisdirectoryforW&B!wandb:Networkerror(
- ACNet:深度学习中的自适应卷积网络新星
郎轶诺
ACNet:深度学习中的自适应卷积网络新星项目地址:https://gitcode.com/gh_mirrors/ac/ACNet在深度学习领域,卷积神经网络(CNN)一直是图像处理和计算机视觉任务的核心技术。然而,传统的固定大小的卷积核无法灵活适应不同区域的信息密度。针对这一问题,ACNet(AdaptiveConvolutionNetwork)项目应运而生,它引入了一种新型的自适应卷积层,旨在
- wandb超算运行的问题
ajin_97
python深度学习pytorch
wandb:Networkerror(ConnectionError),enteringretryloop.wandb:ERRORRuninitializationhastimedoutafter90.0sec.这是因为wandb需要联网运行,超算无法联网关闭wandb或者wandb设置为offline模式即可importosimportwandbos.environ["WANDB_API_KEY
- ASM系列四 利用Method 组件动态注入方法逻辑
lijingyao8206
字节码技术jvmAOP动态代理ASM
这篇继续结合例子来深入了解下Method组件动态变更方法字节码的实现。通过前面一篇,知道ClassVisitor 的visitMethod()方法可以返回一个MethodVisitor的实例。那么我们也基本可以知道,同ClassVisitor改变类成员一样,MethodVIsistor如果需要改变方法成员,注入逻辑,也可以
- java编程思想 --内部类
百合不是茶
java内部类匿名内部类
内部类;了解外部类 并能与之通信 内部类写出来的代码更加整洁与优雅
1,内部类的创建 内部类是创建在类中的
package com.wj.InsideClass;
/*
* 内部类的创建
*/
public class CreateInsideClass {
public CreateInsideClass(
- web.xml报错
crabdave
web.xml
web.xml报错
The content of element type "web-app" must match "(icon?,display-
name?,description?,distributable?,context-param*,filter*,filter-mapping*,listener*,servlet*,s
- 泛型类的自定义
麦田的设计者
javaandroid泛型
为什么要定义泛型类,当类中要操作的引用数据类型不确定的时候。
采用泛型类,完成扩展。
例如有一个学生类
Student{
Student(){
System.out.println("I'm a student.....");
}
}
有一个老师类
- CSS清除浮动的4中方法
IT独行者
JavaScriptUIcss
清除浮动这个问题,做前端的应该再熟悉不过了,咱是个新人,所以还是记个笔记,做个积累,努力学习向大神靠近。CSS清除浮动的方法网上一搜,大概有N多种,用过几种,说下个人感受。
1、结尾处加空div标签 clear:both 1 2 3 4
.div
1
{
background
:
#000080
;
border
:
1px
s
- Cygwin使用windows的jdk 配置方法
_wy_
jdkwindowscygwin
1.[vim /etc/profile]
JAVA_HOME="/cgydrive/d/Java/jdk1.6.0_43" (windows下jdk路径为D:\Java\jdk1.6.0_43)
PATH="$JAVA_HOME/bin:${PATH}"
CLAS
- linux下安装maven
无量
mavenlinux安装
Linux下安装maven(转) 1.首先到Maven官网
下载安装文件,目前最新版本为3.0.3,下载文件为
apache-maven-3.0.3-bin.tar.gz,下载可以使用wget命令;
2.进入下载文件夹,找到下载的文件,运行如下命令解压
tar -xvf apache-maven-2.2.1-bin.tar.gz
解压后的文件夹
- tomcat的https 配置,syslog-ng配置
aichenglong
tomcathttp跳转到httpssyslong-ng配置syslog配置
1) tomcat配置https,以及http自动跳转到https的配置
1)TOMCAT_HOME目录下生成密钥(keytool是jdk中的命令)
keytool -genkey -alias tomcat -keyalg RSA -keypass changeit -storepass changeit
- 关于领号活动总结
alafqq
活动
关于某彩票活动的总结
具体需求,每个用户进活动页面,领取一个号码,1000中的一个;
活动要求
1,随机性,一定要有随机性;
2,最少中奖概率,如果注数为3200注,则最多中4注
3,效率问题,(不能每个人来都产生一个随机数,这样效率不高);
4,支持断电(仍然从下一个开始),重启服务;(存数据库有点大材小用,因此不能存放在数据库)
解决方案
1,事先产生随机数1000个,并打
- java数据结构 冒泡排序的遍历与排序
百合不是茶
java
java的冒泡排序是一种简单的排序规则
冒泡排序的原理:
比较两个相邻的数,首先将最大的排在第一个,第二次比较第二个 ,此后一样;
针对所有的元素重复以上的步骤,除了最后一个
例题;将int array[]
- JS检查输入框输入的是否是数字的一种校验方法
bijian1013
js
如下是JS检查输入框输入的是否是数字的一种校验方法:
<form method=post target="_blank">
数字:<input type="text" name=num onkeypress="checkNum(this.form)"><br>
</form>
- Test注解的两个属性:expected和timeout
bijian1013
javaJUnitexpectedtimeout
JUnit4:Test文档中的解释:
The Test annotation supports two optional parameters.
The first, expected, declares that a test method should throw an exception.
If it doesn't throw an exception or if it
- [Gson二]继承关系的POJO的反序列化
bit1129
POJO
父类
package inheritance.test2;
import java.util.Map;
public class Model {
private String field1;
private String field2;
private Map<String, String> infoMap
- 【Spark八十四】Spark零碎知识点记录
bit1129
spark
1. ShuffleMapTask的shuffle数据在什么地方记录到MapOutputTracker中的
ShuffleMapTask的runTask方法负责写数据到shuffle map文件中。当任务执行完成成功,DAGScheduler会收到通知,在DAGScheduler的handleTaskCompletion方法中完成记录到MapOutputTracker中
- WAS各种脚本作用大全
ronin47
WAS 脚本
http://www.ibm.com/developerworks/cn/websphere/library/samples/SampleScripts.html
无意中,在WAS官网上发现的各种脚本作用,感觉很有作用,先与各位分享一下
获取下载
这些示例 jacl 和 Jython 脚本可用于在 WebSphere Application Server 的不同版本中自
- java-12.求 1+2+3+..n不能使用乘除法、 for 、 while 、 if 、 else 、 switch 、 case 等关键字以及条件判断语句
bylijinnan
switch
借鉴网上的思路,用java实现:
public class NoIfWhile {
/**
* @param args
*
* find x=1+2+3+....n
*/
public static void main(String[] args) {
int n=10;
int re=find(n);
System.o
- Netty源码学习-ObjectEncoder和ObjectDecoder
bylijinnan
javanetty
Netty中传递对象的思路很直观:
Netty中数据的传递是基于ChannelBuffer(也就是byte[]);
那把对象序列化为字节流,就可以在Netty中传递对象了
相应的从ChannelBuffer恢复对象,就是反序列化的过程
Netty已经封装好ObjectEncoder和ObjectDecoder
先看ObjectEncoder
ObjectEncoder是往外发送
- spring 定时任务中cronExpression表达式含义
chicony
cronExpression
一个cron表达式有6个必选的元素和一个可选的元素,各个元素之间是以空格分隔的,从左至右,这些元素的含义如下表所示:
代表含义 是否必须 允许的取值范围 &nb
- Nutz配置Jndi
ctrain
JNDI
1、使用JNDI获取指定资源:
var ioc = {
dao : {
type :"org.nutz.dao.impl.NutDao",
args : [ {jndi :"jdbc/dataSource"} ]
}
}
以上方法,仅需要在容器中配置好数据源,注入到NutDao即可.
- 解决 /bin/sh^M: bad interpreter: No such file or directory
daizj
shell
在Linux中执行.sh脚本,异常/bin/sh^M: bad interpreter: No such file or directory。
分析:这是不同系统编码格式引起的:在windows系统中编辑的.sh文件可能有不可见字符,所以在Linux系统下执行会报以上异常信息。
解决:
1)在windows下转换:
利用一些编辑器如UltraEdit或EditPlus等工具
- [转]for 循环为何可恨?
dcj3sjt126com
程序员读书
Java的闭包(Closure)特征最近成为了一个热门话题。 一些精英正在起草一份议案,要在Java将来的版本中加入闭包特征。 然而,提议中的闭包语法以及语言上的这种扩充受到了众多Java程序员的猛烈抨击。
不久前,出版过数十本编程书籍的大作家Elliotte Rusty Harold发表了对Java中闭包的价值的质疑。 尤其是他问道“for 循环为何可恨?”[http://ju
- Android实用小技巧
dcj3sjt126com
android
1、去掉所有Activity界面的标题栏
修改AndroidManifest.xml 在application 标签中添加android:theme="@android:style/Theme.NoTitleBar"
2、去掉所有Activity界面的TitleBar 和StatusBar
修改AndroidManifes
- Oracle 复习笔记之序列
eksliang
Oracle 序列sequenceOracle sequence
转载请出自出处:http://eksliang.iteye.com/blog/2098859
1.序列的作用
序列是用于生成唯一、连续序号的对象
一般用序列来充当数据库表的主键值
2.创建序列语法如下:
create sequence s_emp
start with 1 --开始值
increment by 1 --増长值
maxval
- 有“品”的程序员
gongmeitao
工作
完美程序员的10种品质
完美程序员的每种品质都有一个范围,这个范围取决于具体的问题和背景。没有能解决所有问题的
完美程序员(至少在我们这个星球上),并且对于特定问题,完美程序员应该具有以下品质:
1. 才智非凡- 能够理解问题、能够用清晰可读的代码翻译并表达想法、善于分析并且逻辑思维能力强
(范围:用简单方式解决复杂问题)
- 使用KeleyiSQLHelper类进行分页查询
hvt
sql.netC#asp.nethovertree
本文适用于sql server单主键表或者视图进行分页查询,支持多字段排序。KeleyiSQLHelper类的最新代码请到http://hovertree.codeplex.com/SourceControl/latest下载整个解决方案源代码查看。或者直接在线查看类的代码:http://hovertree.codeplex.com/SourceControl/latest#HoverTree.D
- SVG 教程 (三)圆形,椭圆,直线
天梯梦
svg
SVG <circle> SVG 圆形 - <circle>
<circle> 标签可用来创建一个圆:
下面是SVG代码:
<svg xmlns="http://www.w3.org/2000/svg" version="1.1">
<circle cx="100" c
- 链表栈
luyulong
java数据结构
public class Node {
private Object object;
private Node next;
public Node() {
this.next = null;
this.object = null;
}
public Object getObject() {
return object;
}
public
- 基础数据结构和算法十:2-3 search tree
sunwinner
Algorithm2-3 search tree
Binary search tree works well for a wide variety of applications, but they have poor worst-case performance. Now we introduce a type of binary search tree where costs are guaranteed to be loga
- spring配置定时任务
stunizhengjia
springtimer
最近因工作的需要,用到了spring的定时任务的功能,觉得spring还是很智能化的,只需要配置一下配置文件就可以了,在此记录一下,以便以后用到:
//------------------------定时任务调用的方法------------------------------
/**
* 存储过程定时器
*/
publi
- ITeye 8月技术图书有奖试读获奖名单公布
ITeye管理员
活动
ITeye携手博文视点举办的8月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
8月试读活动回顾:
http://webmaster.iteye.com/blog/2102830
本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《跨终端Web》
gleams:http