- ARM嵌入式可编程控制器技术开发
拉勾科研工作室
arm开发
PLC自动化设计|毕业设计指导|工业自动化解决方案✨专业领域:PLC程序设计与调试工业自动化控制系统HMI人机界面开发工业传感器应用电气控制系统设计工业网络通信擅长工具:西门子S7系列PLC编程三菱/欧姆龙PLC应用触摸屏界面设计电气CAD制图工业现场总线技术自动化设备调试主要内容:PLC控制系统设计工业自动化方案规划电气原理图绘制控制程序编写与调试毕业论文指导毕业设计题目与程序设计✅具体问题可以
- 基于Python的Google Scholar学术论文爬虫实战:最新技术与完整代码解析
Python爬虫项目
2025年爬虫实战项目python爬虫开发语言学习scrapy
摘要本文详细介绍如何使用Python构建一个高效的GoogleScholar爬虫系统,包括代理设置、反反爬策略、数据解析与存储等核心技术。文章涵盖最新Python爬虫技术栈(如Playwright、异步IO等),提供完整可运行的代码示例,并讨论学术爬虫的伦理与法律问题。通过本教程,读者将掌握从GoogleScholar批量获取学术论文信息的高级爬虫技术。关键词:Python爬虫、GoogleSch
- [论文阅读]Distilling Step-by-Step! Outperforming Larger Language Models with Less Training Data and Smal
0x211
论文阅读语言模型人工智能自然语言处理
中文译名:逐步蒸馏!以较少的训练数据和较小的模型规模超越较大的语言模型发布链接:http://arxiv.org/abs/2305.02301AcceptedtoFindingsofACL2023阅读原因:近期任务需要用到蒸馏操作,了解相关知识核心思想:改变视角。原来的视角:把LLMs视为噪声标签的来源。现在的视角:把LLMs视为能够推理的代理。方法好在哪?需要的数据量少,得到的结果好。文章的方法
- python+springboot+vue的音乐系统
QQ_511008285
pythonspringbootvue.jsdjangoflasknode.jsphp
目录技术栈介绍具体实现截图系统设计研究方法:设计步骤设计流程核心代码部分展示研究方法详细视频演示试验方案论文大纲源码获取/详细视频演示技术栈介绍Django-SpringBoot-php-Node.js-flask本课题的研究方法和研究步骤基本合理,难度适中,本选题是学生所学专业知识的延续,符合学生专业发展方向,对于提高学生的基本知识和技能以及钻研能力有益。该学生能够在预定时间内完成该课题的设计。
- python基于Hadoop的NBA球员大数据分析与可视化系统
目录技术栈介绍具体实现截图系统设计研究方法:设计步骤设计流程核心代码部分展示研究方法详细视频演示试验方案论文大纲源码获取/详细视频演示技术栈介绍Django-SpringBoot-php-Node.js-flask本课题的研究方法和研究步骤基本合理,难度适中,本选题是学生所学专业知识的延续,符合学生专业发展方向,对于提高学生的基本知识和技能以及钻研能力有益。该学生能够在预定时间内完成该课题的设计。
- 基于 Python 的图书管理系统(源码)
摘要:本论文详细阐述了利用Python语言开发一个简易图书管理系统的过程。该系统具备图书信息录入、删除、修改、查询以及借阅管理等核心功能,可有效提升图书管理的效率与便捷性。通过阐述系统的需求分析、设计思路、代码实现及测试过程,展示了Python在小型管理系统开发中的应用潜力,为相关领域的软件开发提供了有益参考。关键词:Python编程;图书管理系统;数据结构;代码实现一、引言(一)研究背景随着数字
- 【EGSR2025】材质+扩散模型+神经网络相关论文整理随笔(四)
Superstarimage
文献随笔材质神经网络人工智能扩散模型
AnevaluationofSVBRDFPredictionfromGenerativeImageModelsforAppearanceModelingof3DScenes输入3D场景的几何和一张参考图像,通过扩散模型和SVBRDF预测器获取多视角的材质maps,这些maps最终合并成场景的纹理地图集,并支持在任意视角、任意光照条件下进行重新渲染。样例图如下:在当前时代的技术背景下,生成与几何匹配
- 超越RAG的搜索革命!分层框架让AI像专家团队一样深度思考
Python_金钱豹
人工智能深度学习网络知识图谱大数据
❝一句话概括:与其训练一个越来越大的“六边形战士”AI,不如组建一个各有所长的“复仇者联盟”,这篇论文就是那本“联盟组建手册”。(原论文题目见文末,点击阅读原文可直接跳转至原文链接,Publishedonarxivon03Jul2025,byRenminUniversityofChina)*第一阶段:核心思想概览**论文的动机*在面对“未来的家庭娱乐会是什么样?”或“结合最新的财报和市场趋势,分析
- SPGAN: Siamese projection Generative Adversarial Networks
这张生成的图像能检测吗
优质GAN模型训练自己的数据集人工智能生成对抗网络计算机视觉深度学习神经网络算法
简介简介:该论文针对传统GANs中鉴别器采用硬边际分类导致的误分类问题,提出了基于Siameseprojection网络的SPGAN方法。主要创新点包括:(1)设计Siameseprojection网络来测量特征相似性;(2)提出相似特征对抗学习框架,将相似性测量融入生成器和鉴别器的损失函数;(3)通过相似特征对抗学习,鉴别器能最大化真实图像和生成图像特征的差异性,生成器能合成包含更多真实图像特征
- 计算机科学期刊介绍--各种杂志投稿方式与评价
狮子小宝
做研究写论文transactions工作email出版数据库自然语言处理
一、计算机科学期刊介绍计算机科学的publication最大特点在于:极度重视会议,而期刊则通常只用来做re-publication。大部分期刊文章都是会议论文的扩展版,首发就在期刊上的相对较少。也正因为如此,计算机期刊的影响因子都低到惊人的程度,顶级刊物往往也只有1到2左右----被引的通常都是会议版论文,而不是很久以后才出版的期刊版。因此,要讨论计算机科学的publication,首先必须强调
- 【大家的项目】helyim: 纯 Rust 实现的分布式对象存储系统
helyim是使用rust重写的seaweedfs,具体架构可以参考Facebook发表的haystack和f4论文。主要设计目标为:精简文件元数据信息,去掉对象存储不需要的POSIX语义(如文件权限)小文件合并成大文件,从而减小元数据数,使其完全存在内存中,以省去获取文件元数据的磁盘IO支持地域容灾,包括IDC容灾和机架容灾架构简单,易于实现和运维支持的特性:支持使用Http的文件上传,下载,删
- Python:列表切片允许“后边小于左边”吗?
目录1问题2测试3欢迎纠错4论文写作/Python学习智能体1问题 在Python中,列表切片允许“后边小于左边”吗?2测试 在Python中,列表切片允许“后边小于左边”,此时会返回一个空列表,不会报错。 例如:lst=[1,2,3,4,5]print(lst[3:1])#输出:[] 这是因为,当切片的结束索引小于开始索引,且步长为默认的1(正数)时,Python认为没有符合条件的元素,
- 【论文复现】Taylor算法用于TOA(到达时间)的三维标签位置解算,360个标签、12个基站的环境作为验证,附MATLAB例程
MATLAB卡尔曼
论文复现算法matlab开发语言
本文给出论文《基于Taylor-Chan算法的改进UWB室内三维定位方法》中的Taylor算法来解算TOA的复现程序(MATLAB)。使用论文中给定的12个锚点/360个测试的标签用来测试算法性能文章目录运行结果程序介绍核心功能概述结果输出应用场景MATLAB源代码运行结果误差输出:程序介绍本程序基于Taylor迭代算法,实现了对三维空间内360个目标点的TOA(TimeofArrival)定位解
- 论文-算法-伪代码-1
youngfengying
算法
伪代码(Pseudocode)是一种算法描述语言。使用伪代码的目的是为了使被描述的算法可以容易地以任何一种编程语言。伪代码必须结构清晰、代码简单、可读性好,并且类似自然语言。介于自然语言与编程语言之间。例子:主要规定:1)算法中出现的数组、变量可以是以下类型:整数、实数、字符、位串或指针。通常这些类型可以从算法的上下文来看是清楚的,并不需要额外加以说明。2)在算法中的某些指令或子任务可以用文字来叙
- 深度学习交互式图像分割技术演进与突破
wang1776866571
深度学习交互式分割深度学习人工智能交互式分割
说明本文为作者读研期间基于交互式图像分割领域公开文献的系统梳理与个人理解总结,所有内容均为原创撰写(ai辅助创作),未直接复制或抄袭他人成果。文中涉及的算法、模型及实验结论均参考自领域内公开发表的学术论文(具体文献见文末参考文献列表)。本文旨在为交互式图像分割领域的学习者提供一份结构化的综述参考,内容涵盖技术演进、核心方法、关键技术优化及应用前景,希望能为相关研究提供启发。摘要:本文系统综述了基于
- 【论文阅读】【IEEE TCYB 2023】Edge-Guided Recurrent Positioning Network forSalient Object Detection in Opt
引言任务:光学遥感图像中显著目标检测论文地址:Edge-GuidedRecurrentPositioningNetworkforSalientObjectDetectioninOpticalRemoteSensingImages|IEEEJournals&Magazine|IEEEXplore代码地址:前置知识一、摘要目前由于光学rsi中目标类型多样、目标尺度多样、目标方向众多以及背景杂乱,现有S
- 计算机专业毕业设计-线上招聘与求职系统的设计与实现-开题报告
苦奢bu咖啡
课程设计毕业论文毕业设计软件开发开题报告求职招聘javaweb
本系统开发采用技术为JSP、Bootstrap、Ajax、Springboot、Java、Tomcat、Maven此文章为开题报告,此系统已开发完成相关文档都很健全,相关的代码+部署+论文+ppt+代码讲解+答辩指导文件都有可私要,为本人亲自指导加编写,禁止任何人抄袭以及各类盈利性传播计算机专业毕业设计任何项目-程序-论文-想单独指导的可以私1、选题的目的和意义。通过开发一个功能全面的线上招聘与求
- 头盔检测数据集和论文
daguantou
人工智能算法
背景据统计使用摩托车头盔可以将道路交通事故中摩托车驾驶员致命伤害的可能性降低42%,尽管如此,遵守摩托车头盔还是较少,尤其是在发展中国家,为了有效开展针对性的头盔使用运动,政府必须收集有关头盔法律遵守程度的详细数据。但40%的国家尚未估算出这一关键的道路安全指标。而且即使有数据可用,头盔使用的观察也常常受到样本量和区域范围的限制,是从相对较短的时间框架中得出的数据,或仅在学术研究范围内单独收集。缺
- 【自动驾驶】经典LSS算法解析——深度估计
IRevers
个人学习笔记自动驾驶算法人工智能深度学习python机器学习
LSS-Lift.Splat,Shoot论文题目:Lift,Splat,Shoot:EncodingImagesFromArbitraryCameraRigsbyImplicitlyUnprojectingto3D代码:https://github.com/nv-tlabs/lift-splat-shoot概括:先做深度估计和特征融合,然后投影到BEV视图中,在BEV视图中做特征融合,在融合后的特
- 【氮化镓】p-GaN栅极退化的温度和结构相关性
北行黄金橘
氮化镓器件可靠性人工智能机器学习学习科学研究科技
论文总结:本文献深入研究了带有p-GaN栅极的正常关断型(normally-off)高电子迁移率晶体管(GaN-HEMTs)在恒定电压应力下的时序退化行为。通过直流特性分析和温度依赖性分析,研究了故障时间(TTF)与应力温度和器件几何结构的依赖性。结果显示,p-GaN栅极晶体管在7.2V的栅偏压下可达到20年的使用寿命,表明了良好的稳定性。故障时间与应力电压呈指数关系,且退化主要发生在栅极边缘而非
- Minmax 算法与 Alpha-Beta 剪枝小教学
超级小狗
计算机博弈算法剪枝机器学习
要理解Minmax算法和Alpha-Beta剪枝算法,我们可以从“两人零和博弈”场景入手(比如棋类游戏、石头剪刀布)。这类场景的核心是:你和对手轮流决策,你的目标是最大化自己的收益,对手则会最小化你的收益。一、Minmax算法:最简单的博弈决策1.核心思想想象你在玩一个简单的游戏:你和对手轮流选数,最终的得分由你们的选择共同决定。你(Max方):每次选择都想让最终得分尽可能高(最大化收益)。对手(
- 基于SpringBoot+MyBatis+MySQL+VUE实现的汽车租赁系统(附源码+数据库+毕业论文+答辩PPT+项目部署视频教程+项目所需软件工具),推荐!
摘要随着社会的发展,计算机的优势和普及使得汽车租赁系统的开发成为必需。汽车租赁系统主要是借助计算机,通过对汽车租赁信息等信息进行管理。减少管理员的工作,同时也方便广大用户对个人所需汽车租赁信息的及时查询以及管理。汽车租赁系统的开发过程中,采用B/S架构,主要使用Java技术进行开发,结合最新流行的springboot框架。使用Mysql数据库和Eclipse开发环境。该汽车租赁系统包括用户和管理员
- YOLOv11模型轻量化挑战技术文章大纲
程序猿全栈の董(董翔)
githubYOLOv11
模型轻量化的背景与意义目标检测模型YOLOv11的性能与应用场景轻量化的必要性:边缘设备部署、实时性需求、计算资源限制轻量化面临的挑战:精度与速度的权衡、模型压缩方法的选择YOLOv11的轻量化技术方向网络结构优化:深度可分离卷积、分组卷积、瓶颈设计模型剪枝:结构化剪枝与非结构化剪枝策略知识蒸馏:教师-学生模型框架与特征匹配方法量化与低比特压缩:FP16/INT8量化与二值化网络轻量化实现的具体方
- Transformer、BERT等模型原理与应用案例
程序猿全栈の董(董翔)
人工智能热门技术领域transformerbert深度学习
Transformer、BERT等模型原理与应用案例Transformer模型原理Transformer是一种基于注意力机制的深度学习模型架构,由Vaswani等人在2017年的论文"AttentionIsAllYouNeed"中提出。与传统的循环神经网络(RNN)和卷积神经网络(CNN)不同,Transformer完全依赖自注意力机制来处理输入序列的全局依赖关系。核心组件多头自注意力机制(Mul
- 大模型服务的推理优化探索
半吊子全栈工匠
【引】有的事情别人不问时我们明白,一旦要我们解释它我们就不明白了,而这正是我们必须留心思索的东西。于是,开启了一次又一次的论文阅读之旅。开发并部署大模型应用肯定要考虑它们的服务成本。然而,钱并不是唯一的考虑因素,如果不能解决模型性能方面的问题,即使有很大的预算,大模型服务仍会受到影响。本文尝试讨论将LLM推理服务更改为高吞吐量引擎的挑战与应对方法。1.大模型服务面临的挑战大模型的能力令人惊叹,但其
- ER综述论文阅读-Emotion recognition in EEG signals using deep learning methods: A review
今天早睡了
情绪识别EmotionRecognition论文阅读深度学习人工智能
EmotionrecognitioninEEGsignalsusingdeeplearningmethods:AreviewQ1期刊,2023论文链接:https://d1wqtxts1xzle7.cloudfront.net/105887899/emotionreview-libre.pdf?1695460941=&response-content-disposition=inline%3B+f
- 【论文阅读】AdaCtrl: Towards Adaptive and Controllable Reasoning via Difficulty-Aware Budgeting
quintus0505
LLM论文阅读语言模型
AdaCtrl:TowardsAdaptiveandControllableReasoningviaDifficulty-AwareBudgeting3Method3.1长度触发标签作为控制接口(Length-TriggerTagsasControllingInterface)3.2冷启动微调(Cold-startfine-tuning)3.3难度感知的强化学习框架(Difficulty-awar
- 【论文阅读笔记】TimesURL: Self-supervised Contrastive Learning for Universal Time Series
少写代码少看论文多多睡觉
#论文阅读笔记论文阅读笔记
TimesURL:Self-supervisedContrastiveLearningforUniversalTimeSeriesRepresentationLearning摘要 学习适用于多种下游任务的通用时间序列表示,并指出这在实际应用中具有挑战性但也是有价值的。最近,研究人员尝试借鉴自监督对比学习(SSCL)在计算机视觉(CV)和自然语言处理(NLP)中的成功经验,以解决时间序列表示的问题。
- ISBI 2023部分半监督学习论文汇总
xiongxyowo
划水
ISBI2023论文集:https://ieeexplore.ieee.org/xpl/conhome/10230311/proceeding[link]LeveragingInter-AnnotatorDisagreementforSemi-SupervisedSegmentation生物医学图像的信噪比通常较低,这往往导致专家们对GT分割存在分歧。现有的多重标注方法试图解决相互冲突的标注,而我
- 论文略读: Fast-DetectGPT: Efficient Zero-Shot Detection of Machine-Generated Text via Conditional Probab
UQI-LIUWJ
论文笔记人工智能
ICLR2024判断生成的文本是人写的还是大模型写的现有的检测器主要分为两类有监督分类器在训练领域表现出色,但在面对来自不同领域或不熟悉模型生成的文本时表现变差零样本分类器免疫领域特定的退化在检测精度上可以与有监督分类器相当但目前的方法计算成本高、计算时间长——>提出了一种新的假设来检测机器生成的文本人类和机器在给定上下文的情况下选择词汇存在明显的差异人类的选择比较多样,而机器更倾向于选择具有更高
- PHP,安卓,UI,java,linux视频教程合集
cocos2d-x小菜
javaUIPHPandroidlinux
╔-----------------------------------╗┆
- 各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
bozch
.net.net mvc
在.net mvc5中,在执行某一操作的时候,出现了如下错误:
各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
经查询当前的操作与错误内容无关,经过对错误信息的排查发现,事故出现在数据库迁移上。
回想过去: 在迁移之前已经对数据库进行了添加字段操作,再次进行迁移插入XXX字段的时候,就会提示如上错误。
&
- Java 对象大小的计算
e200702084
java
Java对象的大小
如何计算一个对象的大小呢?
 
- Mybatis Spring
171815164
mybatis
ApplicationContext ac = new ClassPathXmlApplicationContext("applicationContext.xml");
CustomerService userService = (CustomerService) ac.getBean("customerService");
Customer cust
- JVM 不稳定参数
g21121
jvm
-XX 参数被称为不稳定参数,之所以这么叫是因为此类参数的设置很容易引起JVM 性能上的差异,使JVM 存在极大的不稳定性。当然这是在非合理设置的前提下,如果此类参数设置合理讲大大提高JVM 的性能及稳定性。 可以说“不稳定参数”
- 用户自动登录网站
永夜-极光
用户
1.目标:实现用户登录后,再次登录就自动登录,无需用户名和密码
2.思路:将用户的信息保存为cookie
每次用户访问网站,通过filter拦截所有请求,在filter中读取所有的cookie,如果找到了保存登录信息的cookie,那么在cookie中读取登录信息,然后直接
- centos7 安装后失去win7的引导记录
程序员是怎么炼成的
操作系统
1.使用root身份(必须)打开 /boot/grub2/grub.cfg 2.找到 ### BEGIN /etc/grub.d/30_os-prober ### 在后面添加 menuentry "Windows 7 (loader) (on /dev/sda1)" { 
- Oracle 10g 官方中文安装帮助文档以及Oracle官方中文教程文档下载
aijuans
oracle
Oracle 10g 官方中文安装帮助文档下载:http://download.csdn.net/tag/Oracle%E4%B8%AD%E6%96%87API%EF%BC%8COracle%E4%B8%AD%E6%96%87%E6%96%87%E6%A1%A3%EF%BC%8Coracle%E5%AD%A6%E4%B9%A0%E6%96%87%E6%A1%A3 Oracle 10g 官方中文教程
- JavaEE开源快速开发平台G4Studio_V3.2发布了
無為子
AOPoraclemysqljavaeeG4Studio
我非常高兴地宣布,今天我们最新的JavaEE开源快速开发平台G4Studio_V3.2版本已经正式发布。大家可以通过如下地址下载。
访问G4Studio网站
http://www.g4it.org
G4Studio_V3.2版本变更日志
功能新增
(1).新增了系统右下角滑出提示窗口功能。
(2).新增了文件资源的Zip压缩和解压缩
- Oracle常用的单行函数应用技巧总结
百合不是茶
日期函数转换函数(核心)数字函数通用函数(核心)字符函数
单行函数; 字符函数,数字函数,日期函数,转换函数(核心),通用函数(核心)
一:字符函数:
.UPPER(字符串) 将字符串转为大写
.LOWER (字符串) 将字符串转为小写
.INITCAP(字符串) 将首字母大写
.LENGTH (字符串) 字符串的长度
.REPLACE(字符串,'A','_') 将字符串字符A转换成_
- Mockito异常测试实例
bijian1013
java单元测试mockito
Mockito异常测试实例:
package com.bijian.study;
import static org.mockito.Mockito.mock;
import static org.mockito.Mockito.when;
import org.junit.Assert;
import org.junit.Test;
import org.mockito.
- GA与量子恒道统计
Bill_chen
JavaScript浏览器百度Google防火墙
前一阵子,统计**网址时,Google Analytics(GA) 和量子恒道统计(也称量子统计),数据有较大的偏差,仔细找相关资料研究了下,总结如下:
为何GA和量子网站统计(量子统计前身为雅虎统计)结果不同?
首先:没有一种网站统计工具能保证百分之百的准确出现该问题可能有以下几个原因:(1)不同的统计分析系统的算法机制不同;(2)统计代码放置的位置和前后
- 【Linux命令三】Top命令
bit1129
linux命令
Linux的Top命令类似于Windows的任务管理器,可以查看当前系统的运行情况,包括CPU、内存的使用情况等。如下是一个Top命令的执行结果:
top - 21:22:04 up 1 day, 23:49, 1 user, load average: 1.10, 1.66, 1.99
Tasks: 202 total, 4 running, 198 sl
- spring四种依赖注入方式
白糖_
spring
平常的java开发中,程序员在某个类中需要依赖其它类的方法,则通常是new一个依赖类再调用类实例的方法,这种开发存在的问题是new的类实例不好统一管理,spring提出了依赖注入的思想,即依赖类不由程序员实例化,而是通过spring容器帮我们new指定实例并且将实例注入到需要该对象的类中。依赖注入的另一种说法是“控制反转”,通俗的理解是:平常我们new一个实例,这个实例的控制权是我
- angular.injector
boyitech
AngularJSAngularJS API
angular.injector
描述: 创建一个injector对象, 调用injector对象的方法可以获得angular的service, 或者用来做依赖注入. 使用方法: angular.injector(modules, [strictDi]) 参数详解: Param Type Details mod
- java-同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待
bylijinnan
Integer
public class PC {
/**
* 题目:生产者-消费者。
* 同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待。
*/
private static final Integer[] val=new Integer[10];
private static
- 使用Struts2.2.1配置
Chen.H
apachespringWebxmlstruts
Struts2.2.1 需要如下 jar包: commons-fileupload-1.2.1.jar commons-io-1.3.2.jar commons-logging-1.0.4.jar freemarker-2.3.16.jar javassist-3.7.ga.jar ognl-3.0.jar spring.jar
struts2-core-2.2.1.jar struts2-sp
- [职业与教育]青春之歌
comsci
教育
每个人都有自己的青春之歌............但是我要说的却不是青春...
大家如果在自己的职业生涯没有给自己以后创业留一点点机会,仅仅凭学历和人脉关系,是难以在竞争激烈的市场中生存下去的....
&nbs
- oracle连接(join)中使用using关键字
daizj
JOINoraclesqlusing
在oracle连接(join)中使用using关键字
34. View the Exhibit and examine the structure of the ORDERS and ORDER_ITEMS tables.
Evaluate the following SQL statement:
SELECT oi.order_id, product_id, order_date
FRO
- NIO示例
daysinsun
nio
NIO服务端代码:
public class NIOServer {
private Selector selector;
public void startServer(int port) throws IOException {
ServerSocketChannel serverChannel = ServerSocketChannel.open(
- C语言学习homework1
dcj3sjt126com
chomework
0、 课堂练习做完
1、使用sizeof计算出你所知道的所有的类型占用的空间。
int x;
sizeof(x);
sizeof(int);
# include <stdio.h>
int main(void)
{
int x1;
char x2;
double x3;
float x4;
printf(&quo
- select in order by , mysql排序
dcj3sjt126com
mysql
If i select like this:
SELECT id FROM users WHERE id IN(3,4,8,1);
This by default will select users in this order
1,3,4,8,
I would like to select them in the same order that i put IN() values so:
- 页面校验-新建项目
fanxiaolong
页面校验
$(document).ready(
function() {
var flag = true;
$('#changeform').submit(function() {
var projectScValNull = true;
var s ="";
var parent_id = $("#parent_id").v
- Ehcache(02)——ehcache.xml简介
234390216
ehcacheehcache.xml简介
ehcache.xml简介
ehcache.xml文件是用来定义Ehcache的配置信息的,更准确的来说它是定义CacheManager的配置信息的。根据之前我们在《Ehcache简介》一文中对CacheManager的介绍我们知道一切Ehcache的应用都是从CacheManager开始的。在不指定配置信
- junit 4.11中三个新功能
jackyrong
java
junit 4.11中两个新增的功能,首先是注解中可以参数化,比如
import static org.junit.Assert.assertEquals;
import java.util.Arrays;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.junit.runn
- 国外程序员爱用苹果Mac电脑的10大理由
php教程分享
windowsPHPunixMicrosoftperl
Mac 在国外很受欢迎,尤其是在 设计/web开发/IT 人员圈子里。普通用户喜欢 Mac 可以理解,毕竟 Mac 设计美观,简单好用,没有病毒。那么为什么专业人士也对 Mac 情有独钟呢?从个人使用经验来看我想有下面几个原因:
1、Mac OS X 是基于 Unix 的
这一点太重要了,尤其是对开发人员,至少对于我来说很重要,这意味着Unix 下一堆好用的工具都可以随手捡到。如果你是个 wi
- 位运算、异或的实际应用
wenjinglian
位运算
一. 位操作基础,用一张表描述位操作符的应用规则并详细解释。
二. 常用位操作小技巧,有判断奇偶、交换两数、变换符号、求绝对值。
三. 位操作与空间压缩,针对筛素数进行空间压缩。
&n
- weblogic部署项目出现的一些问题(持续补充中……)
Everyday都不同
weblogic部署失败
好吧,weblogic的问题确实……
问题一:
org.springframework.beans.factory.BeanDefinitionStoreException: Failed to read candidate component class: URL [zip:E:/weblogic/user_projects/domains/base_domain/serve
- tomcat7性能调优(01)
toknowme
tomcat7
Tomcat优化: 1、最大连接数最大线程等设置
<Connector port="8082" protocol="HTTP/1.1"
useBodyEncodingForURI="t
- PO VO DAO DTO BO TO概念与区别
xp9802
javaDAO设计模式bean领域模型
O/R Mapping 是 Object Relational Mapping(对象关系映射)的缩写。通俗点讲,就是将对象与关系数据库绑定,用对象来表示关系数据。在O/R Mapping的世界里,有两个基本的也是重要的东东需要了解,即VO,PO。
它们的关系应该是相互独立的,一个VO可以只是PO的部分,也可以是多个PO构成,同样也可以等同于一个PO(指的是他们的属性)。这样,PO独立出来,数据持