人工智能之机器学习算法体系汇总

原创作者:王小雷
作品出自:https://github.com/wangxiaoleiAI/machine-learning


*   [1.人工智能之机器学习体系汇总](https://github.com/vbay/machine-learning/blob/master/article/%E7%AC%AC1%E7%AB%A0%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD%E4%B9%8B%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E7%AE%97%E6%B3%95%E4%BD%93%E7%B3%BB%E6%B1%87%E6%80%BB.md#1.%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD%E4%B9%8B%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E4%BD%93%E7%B3%BB%E6%B1%87%E6%80%BB)
*   [2.人工智能相关趋势分析](https://github.com/vbay/machine-learning/blob/master/article/%E7%AC%AC1%E7%AB%A0%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD%E4%B9%8B%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E7%AE%97%E6%B3%95%E4%BD%93%E7%B3%BB%E6%B1%87%E6%80%BB.md#2.%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD%E7%9B%B8%E5%85%B3%E8%B6%8B%E5%8A%BF%E5%88%86%E6%9E%90)
    *   [2.1.人工智能再次登上历史舞台](https://github.com/vbay/machine-learning/blob/master/article/%E7%AC%AC1%E7%AB%A0%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD%E4%B9%8B%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E7%AE%97%E6%B3%95%E4%BD%93%E7%B3%BB%E6%B1%87%E6%80%BB.md#2.1.%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD%E5%86%8D%E6%AC%A1%E7%99%BB%E4%B8%8A%E5%8E%86%E5%8F%B2%E8%88%9E%E5%8F%B0)
    *   [2.2.Python才是王道](https://github.com/vbay/machine-learning/blob/master/article/%E7%AC%AC1%E7%AB%A0%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD%E4%B9%8B%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E7%AE%97%E6%B3%95%E4%BD%93%E7%B3%BB%E6%B1%87%E6%80%BB.md#2.2.Python%E6%89%8D%E6%98%AF%E7%8E%8B%E9%81%93)
    *   [2.3.深度学习趋势大热](https://github.com/vbay/machine-learning/blob/master/article/%E7%AC%AC1%E7%AB%A0%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD%E4%B9%8B%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E7%AE%97%E6%B3%95%E4%BD%93%E7%B3%BB%E6%B1%87%E6%80%BB.md#2.3.%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0%E8%B6%8B%E5%8A%BF%E5%A4%A7%E7%83%AD)
    *   [2.4.中国更爱深度学习](https://github.com/vbay/machine-learning/blob/master/article/%E7%AC%AC1%E7%AB%A0%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD%E4%B9%8B%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E7%AE%97%E6%B3%95%E4%BD%93%E7%B3%BB%E6%B1%87%E6%80%BB.md#2.4.%E4%B8%AD%E5%9B%BD%E6%9B%B4%E7%88%B1%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0)
*   [3.结语](https://github.com/vbay/machine-learning/blob/master/article/%E7%AC%AC1%E7%AB%A0%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD%E4%B9%8B%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E7%AE%97%E6%B3%95%E4%BD%93%E7%B3%BB%E6%B1%87%E6%80%BB.md#3.%E7%BB%93%E8%AF%AD)

参加完2017CCAI,听完各位专家的演讲后受益匪浅。立志写“人工智能之机器学习”系列,此为开篇,主要梳理了机器学习方法体系,人工智能相关趋势,Python与机器学习,以及结尾的一点感恩。

> [Github开源机器学习系列文章及算法源码](https://github.com/wangxiaoleiAI/machine-learning)

# [](https://github.com/vbay/machine-learning/blob/master/article/%E7%AC%AC1%E7%AB%A0%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD%E4%B9%8B%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E7%AE%97%E6%B3%95%E4%BD%93%E7%B3%BB%E6%B1%87%E6%80%BB.md#1%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD%E4%B9%8B%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E4%BD%93%E7%B3%BB%E6%B1%87%E6%80%BB)1.人工智能之机器学习体系汇总

【直接上干货】此处梳理出面向人工智能的机器学习方法体系,主要体现机器学习方法和逻辑关系,理清机器学习脉络,后续文章会针对机器学习系列讲解算法原理和实战。抱着一颗严谨学习之心,有不当之处欢迎斧正。

[[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-LmFWUter-1581991579667)(https://github.com/vbay/machine-learning/raw/master/article/pic/01/01-ml-all.png)]](https://github.com/vbay/machine-learning/blob/master/article/pic/01/01-ml-all.png)

*   监督学习 Supervised learning
    *   人工神经网络 Artificial neural network
        *   自动编码器 Autoencoder
        *   反向传播 Backpropagation
        *   玻尔兹曼机 Boltzmann machine
        *   卷积神经网络 Convolutional neural network
        *   Hopfield网络 Hopfield network
        *   多层感知器 Multilayer perceptron
        *   径向基函数网络(RBFN) Radial basis function network(RBFN)
        *   受限玻尔兹曼机 Restricted Boltzmann machine
        *   回归神经网络(RNN) Recurrent neural network(RNN)
        *   自组织映射(SOM) Self-organizing map(SOM)
        *   尖峰神经网络 Spiking neural network
    *   贝叶斯 Bayesian
        *   朴素贝叶斯 Naive Bayes
        *   高斯贝叶斯 Gaussian Naive Bayes
        *   多项朴素贝叶斯 Multinomial Naive Bayes
        *   平均一依赖性评估(AODE) Averaged One-Dependence Estimators(AODE)
        *   贝叶斯信念网络(BNN) Bayesian Belief Network(BBN)
        *   贝叶斯网络(BN) Bayesian Network(BN)
    *   决策树 Decision Tree
        *   分类和回归树(CART) Classification and regression tree (CART)
        *   迭代Dichotomiser 3(ID3) Iterative Dichotomiser 3(ID3)
        *   C4.5算法 C4.5 algorithm
        *   C5.0算法 C5.0 algorithm
        *   卡方自动交互检测(CHAID) Chi-squared Automatic Interaction Detection(CHAID)
        *   决策残端 Decision stump
        *   ID3算法 ID3 algorithm
        *   随机森林 Random forest
        *   SLIQ
    *   线性分类 Linear classifier
        *   Fisher的线性判别 Fisher's linear discriminant
        *   线性回归 Linear regression
        *   Logistic回归 Logistic regression
        *   多项Logistic回归 Multinomial logistic regression
        *   朴素贝叶斯分类器 Naive Bayes classifier
        *   感知 Perceptron
        *   支持向量机 Support vector machine
*   无监督学习 Unsupervised learning
    *   人工神经网络 Artificial neural network
        *   对抗生成网络
        *   前馈神经网络 Feedforward neurral network
            *   极端学习机 Extreme learning machine
        *   逻辑学习机 Logic learning machine
        *   自组织映射 Self-organizing map
    *   关联规则学习 Association rule learning
        *   先验算法 Apriori algorithm
        *   Eclat算法 Eclat algorithm
        *   FP-growth算法 FP-growth algorithm
    *   分层聚类 Hierarchical clustering
        *   单连锁聚类 Single-linkage clustering
        *   概念聚类 Conceptual clustering
    *   聚类分析 Cluster analysis
        *   BIRCH
        *   DBSCAN
        *   期望最大化(EM) Expectation-maximization(EM)
        *   模糊聚类 Fuzzy clustering
        *   K-means算法 K-means algorithm
        *   k-均值聚类 K-means clustering
        *   k-位数 K-medians
        *   平均移 Mean-shift
        *   OPTICS算法 OPTICS algorithm
    *   异常检测 Anomaly detection
        *   k-最近邻算法(K-NN) k-nearest neighbors classification(K-NN)
        *   局部异常因子 Local outlier factor
*   半监督学习 Semi-supervised learning
    *   生成模型 Generative models
    *   低密度分离 Low-density separation
    *   基于图形的方法 Graph-based methods
    *   联合训练 Co-training
*   强化学习 Reinforcement learning
    *   时间差分学习 Temporal difference learning
    *   Q学习 Q-learning
    *   学习自动 Learning Automata
    *   状态-行动-回馈-状态-行动(SARSA) State-Action-Reward-State-Action(SARSA)
*   深度学习 Deep learning
    *   深度信念网络 Deep belief machines
    *   深度卷积神经网络 Deep Convolutional neural networks
    *   深度递归神经网络 Deep Recurrent neural networks
    *   分层时间记忆 Hierarchical temporal memory
    *   深度玻尔兹曼机(DBM) Deep Boltzmann Machine(DBM)
    *   堆叠自动编码器 Stacked Boltzmann Machine
    *   生成式对抗网络(GANs) Generative adversarial networks(GANs)
*   迁移学习 Transfer learning
    *   传递式迁移学习 Transitive Transfer Learning
*   其他
    *   集成学习算法
        *   Bootstrap aggregating (Bagging)
        *   AdaBoost
        *   梯度提升机(GBM) Gradient boosting machine(GBM)
        *   梯度提升决策树(GBRT) Gradient boosted decision tree(GBRT)
    *   降维
        *   主成分分析(PCA) Principal component analysis(PCA)
        *   主成分回归(PCR) Principal component regression(PCR)
        *   因子分析 Factor analysis

> 学习应当严谨,有不当场之处欢迎斧正。

> 强力驱动 Wikipedia CSDN

# [](https://github.com/vbay/machine-learning/blob/master/article/%E7%AC%AC1%E7%AB%A0%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD%E4%B9%8B%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E7%AE%97%E6%B3%95%E4%BD%93%E7%B3%BB%E6%B1%87%E6%80%BB.md#2%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD%E7%9B%B8%E5%85%B3%E8%B6%8B%E5%8A%BF%E5%88%86%E6%9E%90)2.人工智能相关趋势分析

## [](https://github.com/vbay/machine-learning/blob/master/article/%E7%AC%AC1%E7%AB%A0%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD%E4%B9%8B%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E7%AE%97%E6%B3%95%E4%BD%93%E7%B3%BB%E6%B1%87%E6%80%BB.md#21%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD%E5%86%8D%E6%AC%A1%E7%99%BB%E4%B8%8A%E5%8E%86%E5%8F%B2%E8%88%9E%E5%8F%B0)2.1.人工智能再次登上历史舞台

人工智能与大数据对比——当今人工智能高于大数据 [[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ujA1Vcip-1581991579668)(https://github.com/vbay/machine-learning/raw/master/article/pic/01/01-b-m.png)]](https://github.com/vbay/machine-learning/blob/master/article/pic/01/01-b-m.png)

[数据来自Goolge trends]

## [](https://github.com/vbay/machine-learning/blob/master/article/%E7%AC%AC1%E7%AB%A0%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD%E4%B9%8B%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E7%AE%97%E6%B3%95%E4%BD%93%E7%B3%BB%E6%B1%87%E6%80%BB.md#22python%E6%89%8D%E6%98%AF%E7%8E%8B%E9%81%93)2.2.Python才是王道

[[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-TXhIiZzD-1581991579669)(https://github.com/vbay/machine-learning/raw/master/article/pic/01/01-python.png)]](https://github.com/vbay/machine-learning/blob/master/article/pic/01/01-python.png)

[数据来自Google trends]

## [](https://github.com/vbay/machine-learning/blob/master/article/%E7%AC%AC1%E7%AB%A0%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD%E4%B9%8B%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E7%AE%97%E6%B3%95%E4%BD%93%E7%B3%BB%E6%B1%87%E6%80%BB.md#23%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0%E8%B6%8B%E5%8A%BF%E5%A4%A7%E7%83%AD)2.3.深度学习趋势大热

[[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Rn8Ozjvd-1581991579669)(https://github.com/vbay/machine-learning/raw/master/article/pic/01/01-ml-dl.png)]](https://github.com/vbay/machine-learning/blob/master/article/pic/01/01-ml-dl.png)

[数据来自Google trends]

## [](https://github.com/vbay/machine-learning/blob/master/article/%E7%AC%AC1%E7%AB%A0%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD%E4%B9%8B%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E7%AE%97%E6%B3%95%E4%BD%93%E7%B3%BB%E6%B1%87%E6%80%BB.md#24%E4%B8%AD%E5%9B%BD%E6%9B%B4%E7%88%B1%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0)2.4.中国更爱深度学习

[[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-lgXVauxv-1581991579670)(https://github.com/vbay/machine-learning/raw/master/article/pic/01/01-ch-dl.png)]](https://github.com/vbay/machine-learning/blob/master/article/pic/01/01-ch-dl.png)

[数据来源-Google trends]

# [](https://github.com/vbay/machine-learning/blob/master/article/%E7%AC%AC1%E7%AB%A0%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD%E4%B9%8B%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E7%AE%97%E6%B3%95%E4%BD%93%E7%B3%BB%E6%B1%87%E6%80%BB.md#3%E7%BB%93%E8%AF%AD)3.结语

关于人工智能的一点感想,写在最后

> AI systems can’t model everything... AI needs to be robust to “unknown unknowns” [Thomas G.Dietterich ,2017CCAI]

中国自古有之

> “知之为知之,不知为不知,是知也”【出自《论语》】

人工智能已然是历史的第三波浪潮,堪称“工业4.0”,有突破性的成就,但也有未解之谜。真正创造一个有认知力的“生命”——还有很大的难度。希望此次浪潮会持续下去,创造出其真正的价值,而非商业泡沫。

大多数的我们发表不了顶级学术论文,开创不了先河。不要紧,沉下心,努力去实践。

人工智能路漫漫,却让我们的生活充满了机遇与遐想。

> 立志每周【周日】更新一篇“人工智能之机器学习”系列。[Github开源机器学习系列文章及算法源码](https://github.com/wangxiaoleiAI/machine-learning)

感谢CSDN的2017CCAI参会机遇与分享平台。

你可能感兴趣的:(机器学习)