Zynq UltraScale+ MPSoC 的多媒体功能解决方案(连载四)——应用示例

Zynq UltraScale+ MPSoC 的多媒体功能解决方案(连载四)——应用示例_第1张图片
Zynq UltraScale+ MPSoC 的多媒体功能解决方案(连载四)

应用示例

Zynq UltraScale+MPSoC 的可扩展电源、高性能和专用引擎使其成为许多应用的理想选择。
视频会议应用
Zynq UltraScale+ MPSoC 支持高端视频会议端点。视频会议端点是用来进行点对点视频通话的终端。一个完整的双向视频会议系统由一个视频摄像头和一个基本单元组成,该基本单元与每个位置的视频显器连接。两个基础单元间的通信在 IP 网络上进行。视频基础单元由带有集成型片上视频端口的 示 DSP组成,用于处理音频和视频编码/ 解码。

逻辑资源和收发器可用来连接 UHD-4K 视频摄像头以采集原始视频,并将其馈送至已连接的存储器中。DSP 块资源用来对采集到的数据进行图像处理,而处理后的数据转发给集成 VCU 进行压缩。使用运行于 APU 子系统之上的应用软件将压缩后的数据进行分组,并通过以太网将其以流媒体的形式传输到远程端点。
终端端点也能从远程端点接收压缩数据,用 VCU 将其解码,并存储在已连接的存储器上。在 PL 中运行的软视频处理块 IP 能缩小从摄像头采集到的原始数据,并将其与解码数据混合,随后将其提供给显示控制器,在 PS 或 PL 的软 IP 中实现。
GPU 可用来创建屏幕显示 OSD,其输出可与来自视频处理单元 (VPU) 的视频输出混合,将其发送到显示控制器,并在监测器上显示。参见下图.
Zynq UltraScale+ MPSoC 的多媒体功能解决方案(连载四)——应用示例_第2张图片
视频会议应用图
Zynq UltraScale+ MPSoC 的多媒体功能解决方案(连载四)——应用示例_第3张图片
利用 Zynq UltraScale+ MPSoC

数据中心与云计算领域的视频转码
视频转码是指将媒体资产从一种格式转为另一种格式的过程,从而可在不同平台和设备上查看视频。大多数情况下,进行视频转码是由于以下一种或多种情况:

• 目标设备不支持原始数据的格式。
• 目标设备容量有限,需减小原始文件的大小。
• 必须将不兼容或过时的文件格式转为现代格式,从而使新设备更好地支持。

视频转码流程通常分为两步。第一步是解码,可将原始数据转为非压缩格式。第二步是对数据重新编码,即可将数据以所需的格式传送到新设备上。

随着互联网上 Netflix 和 YouTube 等流行网站的流媒体不断增长,而且 UHD 4K 摄像头在市场上地位日益突显,需要大量存储和带宽。

服务多样化不断发展,高清视频的日益普及,以及超高清格式(如 UHD)的出现,对编码效率的强烈需求远超诸如 H.264/AVC 等现有编解码器的能力。当更高的分辨率伴随着立体声或多视点捕获和显示时,需求就更为强烈。H.265/HEVC 编解码器的设计旨在支持 UHD4K 和 UHD8K,并且有关工具能充分发挥并行架构的优势。与同等质量水平的H.264 编码内容相比,HEVC 标准能够削减约 50% 的带宽占用。

大部分数据中心采用不同的压缩格式存储视频,但传输视频流的方式则需参照接收器所支持的格式。

为支持有关拓扑,数据中心需要根据目标支持的格式将一种视频格式转码为其他格式。在这种拓扑中,Zynq UltraScale+ MPSoC 器件非常适合高性能转码,因为它支持当前部署的技术 (H.264/AVC) 和未来新一代编解码器标准 (HEVC)。它还具有在可编程逻辑中编程不同的硬件编解码器的灵活性,从而支持各种编解码器标准。如果在数据中心或云计算系统中部署为加速器,Zynq UltraScale + MPSoC 上的 VCU 就能加速转码过程。例如,移动用户录制 H.264 格式的直播视频,并将视频上传到云服务器以便将来播放。如用户希望在仅支持 HEVC 格式的工作站上播放云端存储的视频,那么工作站可请求服务器进行内容转码,并以 HEVC 格式发送视频。在接收到工作站的请求后,服务器利用集成型 VCU 作为编解码器加速器执行从 H.264 到 HEVC 的转码,并将视频流传输至工作站。
Zynq UltraScale+ MPSoC 的多媒体功能解决方案(连载四)——应用示例_第4张图片
视频转码图

实时转码的另一个应用是监控摄像头,摄像头支持 H.264 压缩,但播放设备支持 HEVC 编解码器。在此情况下,Zynq UltraScale+ MPSoC VCU 能完美匹配相关要求,因为它能从监控网络 IP 摄像头接收 H.264 压缩数据,然后用 VCU 模块将其转码为 H.265,再将其传输到目标播放设备显示播放内容。

汽车全景查看系统
汽车全景查看已改变了驾驶体验,而 GPU 是推进该技术发展的主要力量。全景摄像系统是一种新兴的汽车高级驾驶辅助系统 (ADAS) 技术,允许司机看到车辆周围 360 度全景视图,从而帮助司机安全泊车。

基于全景视觉图像解决方案的实时渲染利用虚拟摄像机在 GPU 上重建全视觉测距,其中虚拟摄像机参数从实体摄像机克隆并在 GPU 上实现,生成随实时参数变化的虚拟场景图像。Zynq UltraScale+ MPSoC非常适合这一领域,因为 GPU 具有极高效的固定功能单元GPU 马力用来完成综合,以阐释复合视图,生成输出像素。生成的像素可能是两个像素的组合(如输出处于重叠区)或单个像素(如输出处于非重叠区),用几何查找表 (LUT) 从输入帧提取该像素。几何 LUT 中的每个条目指定摄像机 ID 和输入帧的坐标,从而生成当前位置的输出像素。网表流程随后生成输出帧。给定一个特定的输出分辨率,每个输出位置都可以通过投影和透镜转换到输入图像中的一个位置来映射到输入图像。网表包括车辆周边环境位置的 3D 世界坐标和用于从给定位置的相邻摄像机观察场景。

进行纹理映射的相关输入位置。将输出表示为碗形,其高度根据距车辆中心的距离而变化。将包括输出网格和相关纹理映射的网表集合传递给图形处理器做进一步的渲染。应用结合网表也能生成混合LUT,除了网格表,应用程序还可以生成一个混合 LUT,它可以对每个位置接收到的图像强度信息的线性组合进行编码。采用 GL_OES_EGL_image_external 延伸,将摄像机 YUV 图像作为纹理传输给 GPU 进行渲染。
Zynq UltraScale+ MPSoC 的多媒体功能解决方案(连载四)——应用示例_第5张图片
全景视图
全景视觉系统从四个鱼眼摄像头接收输入视频流,并创建合成全景视图。该系统利用几何 LUT 编码的映射来创建拼接的输出图像。
Zynq UltraScale+ MPSoC 的多媒体功能解决方案(连载四)——应用示例_第6张图片综合复合视图

你可能感兴趣的:(mpsoc,Zynq,UltraScale+,MPSoC,Zynq,UltraScale+,MPSoC,多媒体功能解决方案)