OpenCV图像分割实战C++(一)Grabcut抠图与证件照背景替换

Grabcut抠图

步骤:

  • 输入原图像
  • 矩形输入
  • 开始分类
  • GMM描述
  • GMM训练分类
  • Graph Cut分类
  • 不断迭代直到收敛分类

API:

void grabCut(
InputArray img, // 待分割图像,8bit,3通道
// 输入输出参数,保存处理后的结果,8bit单通道掩码(与img同rows cols),mask元素值只能为 GC_BGD, GC_FGD, GC_PR_BGD, GC_PR_FGD 之一
InputOutputArray mask, // 如果没有手动标记 GC_BGD或GC_FGD ,那么结果只会有 GC_PR_BGD或GC_PR_FGD
Rect rect, // 当 mode=GC_INIT_WITH_RECT时使用,rect外部的为GC_BGD,rect内部的为GC_FGD
InputOutputArray bgdModel, // 背景模型(内部使用)
InputOutputArray fgdModel, //前景模型(内部使用)
int iterCount, // 迭代次数,必须大于0
int mode = GC_EVAL // GC_INIT_WITH_RECT表示用矩形框初始化Grabcut,GC_INIT_WITH_MASK表示用掩码图像初始化Grabcut, GC_EVAL表示执行分割
);

代码:

#include 
#include 
#include
#include
#include
#include  
#include 

using namespace cv::face;
using namespace cv;
using namespace std;
using namespace cv::xfeatures2d;

int numRun = 0;//记录run了几次
Rect rect;
bool init = false;
Mat src, mask, bgmodel, fgmodel;

void showImage()//显示选择的前景区域
{
    Mat result, binMask;
    binMask.create(mask.size(), CV_8UC1);
    binMask = mask & 1;//&=操作符重载
    if (init)//init后给result设置背景色,前景色
    {
        cout << "binMask depth=" << binMask.depth() << ",type=" << binMask.type() << endl;
        src.copyTo(result, binMask);
    }
    else
    {
        src.copyTo(result);
    }
    rectangle(result, rect, Scalar(0, 0, 255), 2, 8);//绘制红色的矩形框
    imshow("src", result);
}

void setROIMask()//设置背景 前景 区域
{       // GC_FGD = 1       // 属于前景色的像素
        // GC_BGD =0;       // 属于背景色的像素
        // GC_PR_FGD = 3    // 可能属于前景的像素
        // GC_PR_BGD = 2    // 可能属于背景的像素
    mask.setTo(Scalar::all(GC_BGD));//设置为Grabcut的背景色
    rect.x = max(0, rect.x);//max min都是防止rect未初始化导致的差错
    rect.y = max(0, rect.y);
    rect.width = min(rect.width, src.cols - rect.x);
    rect.height = min(rect.height, src.rows - rect.y);
    mask(rect).setTo(Scalar(GC_PR_FGD));//rect区域设置为Grabcut的前景, mask(rect)获取的Mat也是浅拷贝,指针还是指向原mask矩阵
}

void onMouse(int event, int x, int y, int flags, void* param)//鼠标响应事件
{
    switch (event)
    {
    case EVENT_LBUTTONDOWN://鼠标左键按下事件
        rect.x = x;
        rect.y = y;
        rect.width = 1;
        rect.height = 1;
        init = false;
        numRun = 0;
        break;
    case EVENT_MOUSEMOVE://鼠标移动事件
        if (flags&EVENT_FLAG_LBUTTON)//左键按下
        {
            rect = Rect(Point(rect.x, rect.y), Point(x, y));//随鼠标移动的矩形框  左上 右下
            showImage();
        }
        break;
    case EVENT_LBUTTONUP://鼠标左键抬起事件
        if (rect.width > 1 && rect.height > 1)
        {
            setROIMask();
            showImage();
        }
        break;
    default:
        break;
    }
}

void runGrabCut()// Grabcut抠图,算法耗时
{
    if (rect.width < 2 || rect.height < 2)
        return;//框太小
    if (init)
    {
        grabCut(src, mask, rect, bgmodel, fgmodel, 1, GC_EVAL);//分割,抠图
    }
    else
    {
        grabCut(src, mask, rect, bgmodel, fgmodel, 1, GC_INIT_WITH_RECT);// 初始化,也有一定的图像分割的作用,但是上面的执行分割可以在此基础上更进一步的分割
        init = true;
    }
}

int main()
{
    src = imread("C:/Users/Administrator/Desktop/pic/5.jpg");
    mask.create(src.size(), CV_8UC1);
    mask.setTo(Scalar::all(GC_BGD));//背景为黑色
    namedWindow("src", CV_WINDOW_AUTOSIZE);
    setMouseCallback("src", onMouse, 0);
    imshow("src", src);

    while (true)
    {
        char c = (char)waitKey(0);
        if (c == 'b') // 按字母 b
        {
            runGrabCut();
            numRun++;
            showImage();
            printf("current iteative times : %d\n", numRun);
        }
        if ((int)c == 27) break;//esc
    }
}

结果:
OpenCV图像分割实战C++(一)Grabcut抠图与证件照背景替换_第1张图片
OpenCV图像分割实战C++(一)Grabcut抠图与证件照背景替换_第2张图片

证件照背景替换
步骤:

  • 开始
  • 数据组装
  • KMeans分割
  • 背景去除
  • 遮罩生成
  • 遮罩模糊
  • 通道混合输出

代码:

#include 
#include 
#include
#include
#include
#include  
#include 

using namespace cv::face;
using namespace cv;
using namespace std;
using namespace cv::xfeatures2d;

int  main() {
    Mat src = imread("C:/Users/Administrator/Desktop/pic/z5.jpg");
    imshow("src", src);
    //组装数据

    int width = src.cols;
    int height = src.rows;
    int samplecount = width * height;
    int dims = src.channels();
    //行数为src的像素点数,列数为通道数,每列数据分别为src的bgr,从上到下 从左到右顺序读数据
    Mat points(samplecount, dims, CV_32F, Scalar(10));
    int ind = 0;
    for (int row = 0; row < height; row++) {
        for (int col = 0; col < width; col++) {
            ind = row * width + col;//
            Vec3b bgr = src.at(row, col);
            points.at<float>(ind, 0) = static_cast<int>(bgr[0]);
            points.at<float>(ind, 1) = static_cast<int>(bgr[1]);
            points.at<float>(ind, 2) = static_cast<int>(bgr[2]);
        }
    }
    //运行kmeans
    int numCluster = 4;
    Mat labels;
    Mat centers;
    TermCriteria criteria = TermCriteria(TermCriteria::EPS + TermCriteria::COUNT, 10, 0.1);
    kmeans(points, numCluster, labels, criteria, 3, KMEANS_PP_CENTERS, centers);
    //去背景+遮罩生成
    Mat mask = Mat::zeros(src.size(), CV_8UC1);
    int index = src.rows * 2 + 2;//不取边缘的左上点,往里靠2个位置
    int cindex = labels.at<int>(index, 0);
    int height1 = src.rows;
    int width1 = src.cols;
    Mat dst;//人的轮廓周围会有一些杂点,所以需要腐蚀和高斯模糊取干扰
    src.copyTo(dst);
    for (int row = 0; row < height1; row++) {
        for (int col = 0; col < width1; col++) {
            index = row * width1 + col;
            int label = labels.at<int>(index, 0);
            if (label == cindex) {
                dst.at(row, col)[0] = 0;
                dst.at(row, col)[1] = 0;
                dst.at(row, col)[2] = 0;
                mask.at(row, col) = 0;
            }
            else {
                dst.at(row, col) = src.at(row, col);
                mask.at(row, col) = 255;//人脸部分设为白色,以便于下面的腐蚀与高斯模糊
            }
        }
    }
    imshow("dst", dst);
    imshow("mask", dst);
    //腐蚀+高斯模糊
    Mat k = getStructuringElement(MORPH_RECT, Size(3, 3));
    erode(mask, mask, k);
    GaussianBlur(mask, mask, Size(3, 3), 0, 0);
    imshow("gaosimohu", mask);
    //通道混合
    RNG rng(12345);
    Vec3b color;
    color[0] = 180;//rng.uniform(0, 255);
    color[1] =180;//rng.uniform(0, 255);
    color[2] =238;//rng.uniform(0, 255);
    Mat result(src.size(), src.type());

    double w = 0.0;
    int b = 0, g = 0, r = 0;
    int b1 = 0, g1 = 0, r1 = 0;
    int b2 = 0, g2 = 0, r2 = 0;

    double time = getTickCount();
    for (int row = 0; row < height1; row++) {
        for (int col = 0; col < width; col++) {
            int m = mask.at(row, col);
            if (m == 255) {
                result.at(row, col) = src.at(row, col);//前景
            }
            else if (m == 0) {
                result.at(row, col) = color; // 背景
            }
            else {//因为高斯模糊的关系,所以mask元素的颜色除了黑白色还有黑白边缘经过模糊后的非黑白值
                w = m / 255.0;
                b1 = src.at(row, col)[0];
                g1 = src.at(row, col)[1];
                r1 = src.at(row, col)[2];
                b2 = color[0];
                g2 = color[0];
                r2 = color[0];

                b = b1 * w + b2 * (1.0 - w);
                g = g1 * w + g2 * (1.0 - w);
                r = r1 * w + r2 * (1.0 - w);

                result.at(row, col)[0] = b;//最终边缘颜色值
                result.at(row, col)[1] = g;
                result.at(row, col)[2] = r;

            }
        }
    }
    cout << "time=" << (getTickCount() - time) / getTickFrequency() << endl;
    imshow("backgroud repalce", result);
    waitKey(0);
}

结果:
OpenCV图像分割实战C++(一)Grabcut抠图与证件照背景替换_第3张图片

你可能感兴趣的:(OpenCV图像分割实战C++)