函数的重点知识补充
(1)补充的两个小知识点(global,nonlocal)
1.global的使用
我们在补充这两个知识点之前,我们先看一下下面这个例子:
a = 1
def func():
print(a) # 1
func()
a = 1
def func():
# 这里不能够对更改全局作用域变量的值。只能够赋值。不然会报出下面的错误。
a += 1 # 报错 UnboundLocalError: local variable 'a' referenced before assignment
func()
局部作用域对全局作用域的变量(此变量只能是不可变的数据类型)只能进行引用,而不能进行改变,只要改变就会报错,但是有些时候,我们程序中会遇到局部作用域去改变全局作用域的一些变量的需求,这怎么做呢?这就得用到关键字global:
global第一个功能:在局部作用域中可以更改全局作用域的变量。
global第二个功能:利用global在局部作用域也可以声明一个全局变量。
# 这是一个十分重要的例子。一定要深刻的体会。
count = 1
count1 = 2
def search():
global count # 将count变量变为全局的,然后可以在函数体(局部作用域)中可以更改全局作用域的变量。
count += 2 # 那么我们现在就可以对全局变量count的值进行修改。
def search1():
global count1 # 将count1变量变为全局的,然后可以在函数体(局部作用域)中可以更改全局作用域的变量。
count = 6 # 如果没有global这个关键字,那么我们不可以对count的值进行修改操作,只可以进行赋值的操作。
count1 = 5 # 那么我们现在就可以对全局变量count1的值进行赋值修改。
print(count) # 6
print(count1) # 5
search()
print(count) # 3 这里打印count的时候,取值是从全局作用域开始找--》到内置作用域结束。这里的count在前面已经被更改了(global count count += 2),所以这里输出的结果为3
search1()
print(count) # 3 这里打印count的时候,取值是从全局作用域开始找--》到内置作用域结束。这里的count在前面已经被更改了(global count count += 2),所以这里输出的结果为3
print(count1) # 5 这里打印count的时候,取值是从全局作用域开始找--》到内置作用域结束。这里的count在前面已经被更改了(global count1 count1 = 5),所以这里输出的结果为5
所以global关键字有两个作用:
1.声明一个全局变量。
2.在局部作用域想要对全局作用域的全局变量进行修改时,需要用到 global(限于字符串,数字)。
2.nonlocal的使用
nonlocal是python3x新加的功能,与global用法差不多,就是在局部作用域如果想对父级作用域的变量进行改变时,需要用到nonlocal。
def add_b():
b = 42
def do_global():
b = 10
print(b)
def dd_nonlocal():
nonlocal b
b = b + 20
print(b)
dd_nonlocal()
print(b)
do_global()
print(b)
add_b()
# 输出的结果为:
# 10
# 30
# 30
# 42
nonlocal的总结:
1.不能更改全局变量。
2.在局部作用域中,对父级作用域(或者更外层作用域非全局作用域)的变量进行引用和修改,并且引用的哪层,从那层及以下此变量全部发生改变。
(2)函数名的应用
函数名的理解:函数名的定义和变量的定义几乎一致,在变量的角度,函数名其实就是一个变量,具有变量的功能:可以赋值;但是作为函数名他也有特殊的功能就是加上()就会执行对应的函数,所以我们可以把函数名当做一个特殊的变量,那么接下来,我们就来研究一下这个特殊的变量。
def func():
a = 1
b = 2
print(a)
print(a+b)
print(func) #
# 注释,函数名相当于变量,函数名指向的是函数的内存地址,,其实深一步理解可得知,与其说函数名()可以执行这个函数,不如说是函数的内存地址()才是执行这个函数的关键。
def func():
a = 1
b = 2
print(a)
print(a+b)
return '函数执行结束'
print(func) #
a = func # 函数名可以赋值给其他变量,把函数当成一个变量赋值给另一个变量
print(a) #
print(a()) # 函数执行结束
# 通过变量的赋值,变量a,和变量func都指向的这个函数的内存地址,那么a() 当然可以执行这个函数了。
函数名可以当做容器类的元素,其实这个也不难理解,函数名就是一个变量,我的变量是可以当做容器类类型的元素的:
a = 1
b = 'alex'
c = '武sir'
l1 = [a, b, c]
for i in l1:
print(i)
'''
# 结果:
1
alex
武sir
'''
那么函数名也是可以的:
def func1():
print("in func1: 嘻嘻")
def func2():
print("in func2: 哈哈")
def func3():
print("in func3: 咯咯")
def func4():
print("in func4: 吱吱")
lst = [func1, func2, func3, func4]
for i in lst:
i()
# 变量可以做的,函数名都可以做到,函数名可以当做函数的参数
def func1():
print('in func1')
def func2(f):
print('in func2')
f()
func2(func1)
# 函数名可以作为函数的返回值
def func1():
print('in func1')
def func2(f):
print('in func2')
return f
ret = func2(func1)
ret() # ret, f, func1 都是指向的func1这个函数的内存地址
小结:函数名是一个特殊的变量,他除了具有变量的功能,还有最主要一个特点就是加上() 就执行,其实他还有一个学名叫第一类对象。
(3)格式化输出(f-strings)
f-strings 是python3.6开始加入标准库的格式化输出新的写法,这个格式化输出比之前的%s 或者 format 效率高并且更加简化,非常的好用。相信这个格式化的输出是你以后唯一的选择。
f-strings格式化输出的结构是F(f)+ str的形式,在字符串中想替换的位置用{}展位,与format类似,但是用在字符串后面写入替换的内容,而他可以直接识别。
name = 'zhouqian'
age = 18
sex = '男'
msg = F'姓名:{name},性别:{age},年龄:{sex}'
msg1 = f'姓名:{name},年龄:{age},性别:{sex}'
print(msg)
print(msg1)
# 姓名:zhouqian,性别:18,年龄:男
# 姓名:zhouqian,年龄:18,性别:男
他可以加任意的表达式,非常方便。
print(f'{3*21}') # 63
name = 'AndreasZhou'
print(f"全部大写:{name.upper()}") # 全部大写:ANDREASZHOU
# 字典也可以
teacher = {'name': '周乾', 'age': 18}
msg = f"The teacher is {teacher['name']}, aged {teacher['age']}"
print(msg) # The comedian is 周乾, aged 18
# 列表也行
l1 = ['周乾', 18]
msg = f'姓名:{l1[0]},年龄:{l1[1]}.'
print(msg) # 姓名:周乾,年龄:18.
# 也可以插入表达式
def sum_a_b(a,b):
return a + b
a = 1
b = 2
print('求和的结果为' + f'{sum_a_b(a,b)}')
# 求和的结果为3
name = 'zhouqian'
age = 18
ajd = 'handsome'
speaker = f'Hi {name}.'\
f'You are {age} years old.'\
f'You are a {ajd} boy!'
print(speaker)
# Hi zhouqian.You are 18 years old.You are a handsome boy!
print(f"{{73}}") # {73}
print(f"{{{73}}}") # {73}
print(f"{{{{73}}}}") # {{73}}
m = 21
# ! , : { } ;这些标点不能出现在{} 这里面。
# print(f'{;12}') # 报错
# 所以使用lambda 表达式会出现一些问题。
# 解决方式:可将lambda嵌套在圆括号里面解决此问题。
x = 5
print(f'{(lambda x: x*2) (x)}') # 10
总结:f-string的格式化输出更加简洁,方便,易读。而且他的处理速度对之前的%s 或者format 有了较高的提升,所以以后尽量使用此种格式化输出。
(4)匿名函数lambda
匿名函数,顾名思义就是没有名字的函数,那么什么函数没有名字呢?这个就是我们以后面试或者工作中经常用匿名函数 lambda,也叫一句话函数。
现在有一个需求:你们写一个函数,此函数接收两个int参数,返回和值。
def func(a,b):
return a+b
print(func(3,4))
那么接下来我们用匿名函数完成上面的需求:
func = lambda a,b: a+b
print(func(3, 4)) # 7
我们分析一下上面的代码:
语法:
函数名 = lambda 参数:返回值
1)此函数不是没有名字,他是有名字的,他的名字就是你给其设置的变量,比如func.
2)lambda 是定义匿名函数的关键字,相当于函数的def.
3)lambda 后面直接加形参,形参加多少都可以,只要用逗号隔开就行。
func = lambda a,b,*args,sex= 'alex',c,**kwargs: kwargs
print(func(3, 4,c=666,name='alex')) # {'name': 'alex'}
# 所有类型的形参都可以加,但是一般使用匿名函数只是加位置参数,其他的用不到。
4)返回值在冒号之后设置,返回值和正常的函数一样,可以是任意数据类型。
5)匿名函数不管多复杂.只能写一行.且逻辑结束后直接返回数据
接下来做几个匿名函数的小题:
写匿名函数:接收一个可切片的数据,返回索引为0与2的对应的元素(元组形式)。
func = lambda x:(x[0],x[2])
print(func('afafasd'))
写匿名函数:接收两个int参数,将较大的数据返回。
func = lambda x,y: x if x > y else y
print(func(3,100))
(5)内置函数
黄色一带而过:all() any() bytes() callable() chr() complex() divmod() eval() exec() format() frozenset() globals() hash() help() id() input() int() iter() locals() next() oct() ord() pow() repr() round()
all():可迭代对象中,全都是True才是True。
any():可迭代对象中,有一个True就是True。
# all 可迭代对象中,全都是True才是True
# any 可迭代对象中,有一个True 就是True
# print(all([1,2,True,0])) # False
# print(any([1,'',0])) # True
bytes:用于不同编码之间的转化。
# s = '你好'
# bs = s.encode('utf-8')
# print(bs)
# s1 = bs.decode('utf-8')
# print(s1)
# bs = bytes(s,encoding='utf-8')
# print(bs)
# b = '你好'.encode('gbk')
# b1 = b.decode('gbk')
# print(b1.encode('utf-8'))
callable:函数用于检查一个对象是否是可调用的。如果返回True,object仍然可能调用失败;但如果返回False,调用对象ojbect绝对不会成功。
name = 'alex'
def func():
pass
print(callable(name)) # False
print(callable(func)) # True
ord:输入字符找该字符编码的位置
chr:输入位置数字找出其对应的字符
# ord 输入字符找该字符编码的位置
# print(ord('a'))
# print(ord('中'))
# chr 输入位置数字找出其对应的字符
# print(chr(97))
# print(chr(20013))
eval:执行字符串类型的代码,并返回最终结果。
eval('2 + 2') # 4
n=81
eval("n + 4") # 85
eval('print(666)') # 666
exec:执行字符串类型的代码。
s = '''
for i in [1,2,3]:
print(i)
'''
exec(s)
hash:获取一个对象(可哈希对象:int,str,Bool,tuple)的哈希值。
print(hash(12322))
print(hash('123'))
print(hash('arg'))
print(hash('alex'))
print(hash(True))
print(hash(False))
print(hash((1,2,3)))
'''
-2996001552409009098
-4637515981888139739
1
2528502973977326415
'''
help:函数用于查看函数或模块用途的详细说明。
print(help(list))
print(help(str.split))
int:函数用于将一个字符串或数字转换为整型。
print(int()) # 0
print(int('12')) # 12
print(int(3.6)) # 3
print(int('0100',base=2)) # 将2进制的 0100 转化成十进制。结果为 4
float:函数用于将整数和字符串转换成浮点数。
complex:函数用于创建一个值为 real + imag * j 的复数或者转化一个字符串或数为复数。如果第一个参数为字符串,则不需要指定第二个参数。。
print(float(3)) # 3.0
print(complex(1,2)) # (1+2j)
bin:将十进制转换成二进制并返回。
oct:将十进制转化成八进制字符串并返回。
hex:将十进制转化成十六进制字符串并返回。
print(bin(10),type(bin(10))) # 0b1010
print(oct(10),type(oct(10))) # 0o12
print(hex(10),type(hex(10))) # 0xa
divmod:计算除数与被除数的结果,返回一个包含商和余数的元组(a // b, a % b)。
round:保留浮点数的小数位数,默认保留整数。
pow:求xy次幂。(三个参数为xy的结果对z取余)
print(divmod(7,2)) # (3, 1)
print(round(7/3,2)) # 2.33
print(round(7/3)) # 2
print(round(3.32567,3)) # 3.326
print(pow(2,3)) # 两个参数为2**3次幂
print(pow(2,3,3)) # 三个参数为2**3次幂,对3取余。
repr:返回一个对象的string形式(原形毕露)。
# %r 原封不动的写出来
# name = 'taibai'
# print('我叫%r'%name)
# repr 原形毕露
print(repr('{"name":"alex"}'))
print('{"name":"alex"}')
红色重点讲解:abs() enumerate() filter() map() max() min() open() range() print() len() list() dict() str() float() reversed() set() sorted() sum() tuple() type() zip() dir()
print() 屏幕输出。
''' 源码分析
def print(self, *args, sep=' ', end='\n', file=None): # known special case of print
"""
print(value, ..., sep=' ', end='\n', file=sys.stdout, flush=False)
file: 默认是输出到屏幕,如果设置为文件句柄,输出到文件
sep: 打印多个值之间的分隔符,默认为空格
end: 每一次打印的结尾,默认为换行符
flush: 立即把内容输出到流文件,不作缓存
"""
'''
print(111,222,333,sep='*') # 111*222*333
print(111,end='')
print(222) #两行的结果 111222
f = open('log','w',encoding='utf-8')
print('写入文件',fle=f,flush=True)
int():pass
str():pass
bool():pass
set(): pass
list() 将一个可迭代对象转换成列表,pass
tuple() 将一个可迭代对象转换成元组,pass
dict() 通过相应的方式创建字典,pass
l1 = list('abcd')
print(l1) # ['a', 'b', 'c', 'd']
tu1 = tuple('abcd')
print(tu1) # ('a', 'b', 'c', 'd')
abs() 返回绝对值
i = -5
print(abs(i)) # 5
sum() 求和
print(sum([1,2,3]))# 6
print(sum((1,2,3),100))# 106
min() 求最小值
print(min([1,2,3])) # 返回此序列最小值
ret = min([1,2,-5,],key=abs) # 按照绝对值的大小,返回此序列最小值
print(ret)
# 加key是可以加函数名,min自动会获取传入函数中的参数的每个元素,然后通过你设定的返回值比较大小,返回最小的传入的那个参数。
print(min(1,2,-5,6,-3,key=lambda x:abs(x))) # 可以设置很多参数比较大小
dic = {'a':3,'b':2,'c':1}
print(min(dic,key=lambda x:dic[x]))
# x为dic的key,lambda的返回值(即dic的值进行比较)返回最小的值对应的键
# 输出的结果为:
# 1
# 1
# 1
# c
max() 最大值与最小值用法相同。
reversed() 将一个序列翻转, 返回翻转序列的迭代器 reversed 示例:
l = reversed('你好') # l 获取到的是一个生成器
print(list(l))
print('__next__' in dir(l))
ret = reversed([1, 4, 3, 7, 9])
print(list(ret)) # [9, 7, 3, 4, 1]
# 输出的结果为:
# ['好', '你']
# True
# [9, 7, 3, 4, 1]
bytes() 把字符串转换成bytes类型
s = '你好太白'
bs = s.encode('utf-8')
print(bs)
# 结果:b'\xe4\xbd\xa0\xe5\xa5\xbd\xe6\xad\xa6\xe5\xa4\xa7'
s1 = bs.decode('utf-8')
print(s1)
# 结果: 你好太白
s = '你好'
bs = bytes(s,encoding='utf-8')
print(bs)
# 将字符串转换成字节
bs1 = str(bs,encoding='utf-8')
print(bs1)
# 将字节转换成字符串
zip() 拉链方法。函数用于将可迭代的对象作为参数,将对象中对应的元素打包成一个个元组,
然后返回由这些元祖组成的内容,如果各个迭代器的元素个数不一致,则按照长度最短的返回,
lst1 = [1,2,3]
lst2 = ['a','b','c','d']
lst3 = (11,12,13,14,15)
for i in zip(lst1,lst2,lst3):
print(i)
结果:
(1, 'a', 11)
(2, 'b', 12)
(3, 'c', 13)
sorted排序函数
语法:sorted(iterable,key=None,reverse=False)
iterable : 可迭代对象
key: 排序规则(排序函数),在sorted内部会将可迭代对象中的每一个元素传递给这个函数的参数.根据函数运算的结果进行排序
reverse :是否是倒叙,True 倒叙 False 正序
lst = [1,3,2,5,4]
lst2 = sorted(lst)
print(lst) #原列表不会改变
print(lst2) #返回的新列表是经过排序的
lst3 = sorted(lst,reverse=True)
print(lst3) #倒叙
结果:
[1, 3, 2, 5, 4]
[1, 2, 3, 4, 5]
[5, 4, 3, 2, 1]
字典使用sorted排序
dic = {1:'a',3:'c',2:'b'}
print(sorted(dic)) # 字典排序返回的就是排序后的key
结果:
[1,2,3]
和函数组合使用
# 定义一个列表,然后根据一元素的长度排序
lst = ['天龙八部','西游记','红楼梦','三国演义']
# 计算字符串的长度
def func(s):
return len(s)
print(sorted(lst,key=func))
# 结果:
# ['西游记', '红楼梦', '天龙八部', '三国演义']
和lambda组合使用
lst = ['天龙八部','西游记','红楼梦','三国演义']
print(sorted(lst,key=lambda s:len(s)))
结果:
['西游记', '红楼梦', '天龙八部', '三国演义']
lst = [{'id':1,'name':'alex','age':18},
{'id':2,'name':'wusir','age':17},
{'id':3,'name':'taibai','age':16},]
# 按照年龄对学生信息进行排序
print(sorted(lst,key=lambda e:e['age']))
结果:
[{'id': 3, 'name': 'taibai', 'age': 16}, {'id': 2, 'name': 'wusir', 'age': 17}, {'id': 1, 'name': 'alex', 'age': 18}]
filter筛选过滤
语法: filter(function,iterable)
function: 用来筛选的函数,在filter中会自动的把iterable中的元素传递给function,然后根据function返回的True或者False来判断是否保留此项数据
iterable:可迭代对象
lst = [{'id':1,'name':'alex','age':18},
{'id':1,'name':'wusir','age':17},
{'id':1,'name':'taibai','age':16},]
ls = filter(lambda e:e['age'] > 16,lst)
print(list(ls))
结果:
[{'id': 1, 'name': 'alex', 'age': 18},
{'id': 1, 'name': 'wusir', 'age': 17}]
map
映射函数
语法: map(function,iterable) 可以对可迭代对象中的每一个元素进映射,分别取执行function
计算列表中每个元素的平方,返回新列表
lst = [1,2,3,4,5]
def func(s):
return s*s
mp = map(func,lst)
print(mp)
print(list(mp))
改写成lambda
lst = [1,2,3,4,5]
print(list(map(lambda s:s*s,lst)))
计算两个列表中相同位置的数据的和
lst1 = [1, 2, 3, 4, 5]
lst2 = [2, 4, 6, 8, 10]
print(list(map(lambda x, y: x+y, lst1, lst2)))
结果:
[3, 6, 9, 12, 15]
reduce
from functools import reduce
def func(x,y):
return x + y
# reduce 的使用方式:
# reduce(函数名,可迭代对象) # 这两个参数必须都要有,缺一个不行
ret = reduce(func,[3,4,5,6,7])
print(ret) # 结果 25
reduce的作用是先把列表中的前俩个元素取出计算出一个值然后临时保存着,
接下来用这个临时保存的值和列表中第三个元素进行计算,求出一个新的值将最开始
临时保存的值覆盖掉,然后在用这个新的临时值和列表中第四个元素计算.依次类推
注意:我们放进去的可迭代对象没有更改
以上这个例子我们使用sum就可以完全的实现了.我现在有[1,2,3,4]想让列表中的数变成1234,就要用到reduce了.
普通函数版
from functools import reduce
def func(x,y):
return x * 10 + y
# 第一次的时候 x是1 y是2 x乘以10就是10,然后加上y也就是2最终结果是12然后临时存储起来了
# 第二次的时候x是临时存储的值12 x乘以10就是 120 然后加上y也就是3最终结果是123临时存储起来了
# 第三次的时候x是临时存储的值123 x乘以10就是 1230 然后加上y也就是4最终结果是1234然后返回了
l = reduce(func,[1,2,3,4])
print(l)
匿名函数版
l = reduce(lambda x,y:x*10+y,[1,2,3,4])
print(l)
在Python2.x版本中recude是直接 import就可以的, Python3.x版本中需要从functools这个包中导入
龟叔本打算将 lambda 和 reduce 都从全局名字空间都移除, 舆论说龟叔不喜欢lambda 和 reduce
最后lambda没删除是因为和一个人写信写了好多封,进行交流然后把lambda保住了.
蓝色未来会讲: classmethod() delattr() getattr() hasattr() issubclass() isinstance() object() property() setattr() staticmethod() super()