百度飞桨之python小白逆袭训练营

青春有你2选手图片爬取

  • 1、day01 Python基础练习
  • 2、day02 青春有你2选手信息爬取
    • 2.1、爬取百度百科中《青春有你2》中所有参赛选手信息,返回页面数据
    • 2.2、对爬取的页面数据进行解析,并保存为JSON文件
    • 2.3、爬取每个选手的百度百科图片,并进行保存
    • 2.4、打印爬取的所有图片的路径
  • 3、day03《青春有你2》选手数据分析
    • 3.1、绘制选手区域分布柱状图
    • 3.2、对选手体重分布进行可视化,绘制饼状图
  • 4、心得体会

1、day01 Python基础练习

第一题,输出乘法口诀表:

def table():
    #在这里写下您的乘法口诀表代码吧!
    for i in range(1,10):
        row=""
        for j in range(1,i+1):
            row+="{0}*{1}={2} " .format(j,i,i*j)
        print(row)

if __name__ == '__main__':
    table()

这题参照博客写的

第二题,遍历”Day1-homework”目录下文件;找到文件名包含“2020”的文件;将文件名保存到数组result中;按照序号、文件名分行打印输出。

#导入OS模块
import os
#待搜索的目录路径
path = "Day1-homework"
#待搜索的名称
filename = "2020"
#定义保存结果的数组
result = []

def findfiles():
    #在这里写下您的查找文件代码吧!
    for root, dirs, files in os.walk(path):
        # 遍历输出所有文件路径
        for name in files:
            # print(os.path.join(root, name))
            if filename in name:
                result.append(os.path.join(root, name))

    for k in result:
        print(result.index(k), ':', k)
        # 遍历输出目录路径
        # for name in dirs:
        #     print(os.path.join(root, name))
    

if __name__ == '__main__':
    findfiles()

文件读写要牢记,很实用的。

import json
import re
import requests
import datetime
from bs4 import BeautifulSoup
import os

#获取当天的日期,并进行格式化,用于后面文件命名,格式:20200420
today = datetime.date.today().strftime('%Y%m%d')    

def crawl_wiki_data():
    """
    爬取百度百科中《青春有你2》中参赛选手信息,返回html
    """
    headers = { 
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.99 Safari/537.36'
    }
    url='https://baike.baidu.com/item/青春有你第二季'                         

    try:
        response = requests.get(url,headers=headers)
        print(response.status_code)

        #将一段文档传入BeautifulSoup的构造方法,就能得到一个文档的对象, 可以传入一段字符串
        soup = BeautifulSoup(response.text,'lxml')
        
        #返回的是class为table-view log-set-param的所有标签
        tables = soup.find_all('table',{'class':'table-view log-set-param'})

        crawl_table_title ="参赛学员"for table in  tables:#对当前节点前面的标签和字符串进行查找
            table_titles = table.find_previous('div').find_all('h3')for title in table_titles:if(crawl_table_title in title):return table       
    except Exception as e:print(e)

2、day02 青春有你2选手信息爬取

2.1、爬取百度百科中《青春有你2》中所有参赛选手信息,返回页面数据

import json
import re
import requests
import datetime
from bs4 import BeautifulSoup
import os

#获取当天的日期,并进行格式化,用于后面文件命名,格式:20200420
today = datetime.date.today().strftime('%Y%m%d')    

def crawl_wiki_data():
    """
    爬取百度百科中《青春有你2》中参赛选手信息,返回html
    """
    headers = { 
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.99 Safari/537.36'
    }
    url='https://baike.baidu.com/item/青春有你第二季'                         

    try:
        response = requests.get(url,headers=headers)
        print(response.status_code)

        #将一段文档传入BeautifulSoup的构造方法,就能得到一个文档的对象, 可以传入一段字符串
        soup = BeautifulSoup(response.text,'lxml')
        
        #返回的是class为table-view log-set-param的
所有标签 tables = soup.find_all('table',{'class':'table-view log-set-param'}) crawl_table_title = "参赛学员" for table in tables: #对当前节点前面的标签和字符串进行查找 table_titles = table.find_previous('div').find_all('h3') for title in table_titles: if(crawl_table_title in title): return table except Exception as e: print(e)

2.2、对爬取的页面数据进行解析,并保存为JSON文件

def parse_wiki_data(table_html):
    '''
    从百度百科返回的html中解析得到选手信息,以当前日期作为文件名,存JSON文件,保存到work目录下
    '''
    bs = BeautifulSoup(str(table_html),'lxml')
    all_trs = bs.find_all('tr')

    error_list = ['\'','\"']

    stars = []

    for tr in all_trs[1:]:
         all_tds = tr.find_all('td')

         star = {}

         #姓名
         star["name"]=all_tds[0].text
         #个人百度百科链接
         star["link"]= 'https://baike.baidu.com' + all_tds[0].find('a').get('href')
         #籍贯
         star["zone"]=all_tds[1].text
         #星座
         star["constellation"]=all_tds[2].text
         #身高
         star["height"]=all_tds[3].text
         #体重
         star["weight"]= all_tds[4].text

         #花语,去除掉花语中的单引号或双引号
         flower_word = all_tds[5].text
         for c in flower_word:
             if  c in error_list:
                 flower_word=flower_word.replace(c,'')
         star["flower_word"]=flower_word 
         
         #公司
         if not all_tds[6].find('a') is  None:
             star["company"]= all_tds[6].find('a').text
         else:
             star["company"]= all_tds[6].text  

         stars.append(star)

    json_data = json.loads(str(stars).replace("\'","\""))   
    with open('work/' + today + '.json', 'w', encoding='UTF-8') as f:
        json.dump(json_data, f, ensure_ascii=False)

2.3、爬取每个选手的百度百科图片,并进行保存

def crawl_pic_urls():
    '''
    爬取每个选手的百度百科图片,并保存
    ''' 
    with open('work/'+ today + '.json', 'r', encoding='UTF-8') as file:
         json_array = json.loads(file.read())

    headers = { 
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.99 Safari/537.36' 
     }

    for star in json_array:
        print(star)
        name = star['name']
        link = star['link']

        response = requests.get(link,headers=headers)
        bs = BeautifulSoup(response.text,'lxml')

        pic_list_url = bs.select('.summary-pic a')[0].get('href')

        pic_list_url = 'http://baike.baidu.com'+pic_list_url

        pic_list_response = requests.get(pic_list_url,headers=headers)

        # 解析图片列表页面
        bs = BeautifulSoup(pic_list_response.text,'lxml')
        pic_list_html = bs.select('.pic-list img ')

        pic_urls=[]
        for pic_html in pic_list_html:
            pic_url = pic_html.get('src')
            pic_urls.append(pic_url)

        #!!!根据图片链接列表pic_urls, 下载所有图片,保存在以name命名的文件夹中!!!
        down_pic(name,pic_urls)

# if __name__ == '__main__':
#     crawl_pic_urls

def down_pic(name,pic_urls):
    '''
    根据图片链接列表pic_urls, 下载所有图片,保存在以name命名的文件夹中,
    '''
    path = 'work/'+'pics/'+name+'/'

    if not os.path.exists(path):
      os.makedirs(path)

    for i, pic_url in enumerate(pic_urls):
        try:
            pic = requests.get(pic_url, timeout=15)
            string = str(i + 1) + '.jpg'
            with open(path+string, 'wb') as f:
                f.write(pic.content)
                print('成功下载第%s张图片: %s' % (str(i + 1), str(pic_url)))
        except Exception as e:
            print('下载第%s张图片时失败: %s' % (str(i + 1), str(pic_url)))
            print(e)
            continue

2.4、打印爬取的所有图片的路径

def show_pic_path(path):
    '''
    遍历所爬取的每张图片,并打印所有图片的绝对路径
    '''
    pic_num = 0
    for (dirpath,dirnames,filenames) in os.walk(path):
        for filename in filenames:
           pic_num += 1
           print("第%d张照片:%s" % (pic_num,os.path.join(dirpath,filename)))           
    print("共爬取《青春有你2》选手的%d照片" % pic_num)
if __name__ == '__main__':

     #爬取百度百科中《青春有你2》中参赛选手信息,返回html
     html = crawl_wiki_data()

     #解析html,得到选手信息,保存为json文件
     parse_wiki_data(html)

     #从每个选手的百度百科页面上爬取图片,并保存
     crawl_pic_urls()

     #打印所爬取的选手图片路径
     show_pic_path('/home/aistudio/work/pics/')

     print("所有信息爬取完成!")

3、day03《青春有你2》选手数据分析

3.1、绘制选手区域分布柱状图

import matplotlib.pyplot as plt
import numpy as np 
import json
import matplotlib.font_manager as font_manager

#显示matplotlib生成的图形
%matplotlib inline

with open('data/data31557/20200422.json', 'r', encoding='UTF-8') as file:
         json_array = json.loads(file.read())

#绘制小姐姐区域分布柱状图,x轴为地区,y轴为该区域的小姐姐数量

zones = []
for star in json_array:
    zone = star['zone']
    zones.append(zone)
print(len(zones))
print(zones)


zone_list = []
count_list = []

for zone in zones:
    if zone not in zone_list:
        count = zones.count(zone)
        zone_list.append(zone)
        count_list.append(count)

print(zone_list)
print(count_list)

# 设置显示中文
plt.rcParams['font.sans-serif'] = ['SimHei'] # 指定默认字体

plt.figure(figsize=(20,15))

plt.bar(range(len(count_list)), count_list,color='r',tick_label=zone_list,facecolor='#9999ff',edgecolor='white')

# 这里是调节横坐标的倾斜度,rotation是度数,以及设置刻度字体大小
plt.xticks(rotation=45,fontsize=20)
plt.yticks(fontsize=20)

plt.legend()
plt.title('''《青春有你2》参赛选手''',fontsize = 24)
plt.savefig('/home/aistudio/work/result/bar_result.jpg')
plt.show()
import matplotlib.pyplot as plt
import numpy as np 
import json
import matplotlib.font_manager as font_manager
import pandas as pd

#显示matplotlib生成的图形
%matplotlib inline


df = pd.read_json('data/data31557/20200422.json')
#print(df)

grouped=df['name'].groupby(df['zone'])
s = grouped.count()

zone_list = s.index
count_list = s.values


# 设置显示中文
plt.rcParams['font.sans-serif'] = ['SimHei'] # 指定默认字体

plt.figure(figsize=(20,15))

plt.bar(range(len(count_list)), count_list,color='r',tick_label=zone_list,facecolor='#9999ff',edgecolor='white')

# 这里是调节横坐标的倾斜度,rotation是度数,以及设置刻度字体大小
plt.xticks(rotation=45,fontsize=20)
plt.yticks(fontsize=20)

plt.legend()
plt.title('''《青春有你2》参赛选手''',fontsize = 24)
plt.savefig('/home/aistudio/work/result/bar_result02.jpg')
plt.show()

3.2、对选手体重分布进行可视化,绘制饼状图

import matplotlib.pyplot as plt
import numpy as np 
import json
import matplotlib.font_manager as font_manager
import pandas as pd

#显示matplotlib生成的图形
%matplotlib inline

# 设置显示中文
plt.rcParams['font.sans-serif'] = ['SimHei'] # 指定默认字体
plt.rcParams['axes.unicode_minus'] = False
df = pd.read_json('data/data31557/20200422.json')
#print(df)

grouped=df['name'].groupby(df['weight'])
s = grouped.count()
# print(s)
area = df['weight'].value_counts()
# print(area)
print(list(area))
pct = [format(i/sum(list(area)),'.1%') for i in list(area)]
# print(pct)
text_label = ['{}({})'.format(i[0], i[1]) for i in zip(list(area.index), pct)]
# print(text_label)
fig, ax = plt.subplots(figsize=(12, 12*0.618), subplot_kw=dict(aspect="equal"))
explode = [0.02] * len(area)
wedges, texts = ax.pie(list(area), labels=text_label,autopct=None,wedgeprops=None,startangle=0, explode=explode)
plt.title('''《青春有你2》参赛选手体重分布''',fontsize = 24)
plt.savefig('/home/aistudio/work/result/bar_result05.jpg')
plt.show()

百度飞桨之python小白逆袭训练营_第1张图片

4、心得体会

百度很良心,下次还参加。

你可能感兴趣的:(百度飞桨,神经网络,深度学习)