CADisplayLink、NSTimer使用注意
CADisplayLink、NSTimer会对target产生强引用,如果target又对它们产生强引用,那么就会引发循环引用
解决方案
使用block
__weak typeof(self) weakSelf = self;
self.timer = [NSTimer scheduledTimerWithTimeInterval:1.0 repeats:YES block:^(NSTimer * _Nonnull timer) {
[weakSelf timerTest];
}];
- 代理对象方式
+ (instancetype)proxyWithTarget:(id)target
{
LQProxy *proxy = [[LQProxy alloc] init];
proxy.target = target;
return proxy;
}
- (id)forwardingTargetForSelector:(SEL)aSelector
{
return self.target;
}
- 使用代理对象(NSProxy)
NSProxy 不会去父类中搜索是否存在方法,直接到当前类搜索,当前类没有,直接进入消息转发。
proxy:代理的意思,中间对象
专门用来做消息转发的,效率高
+ (instancetype)proxyWithTarget:(id)target
{
// NSProxy对象不需要调用init,因为它本来就没有init方法
LQProxy *proxy = [LQProxy alloc];
proxy.target = target;
return proxy;
}
- (NSMethodSignature *)methodSignatureForSelector:(SEL)sel
{
return [self.target methodSignatureForSelector:sel];
}
- (void)forwardInvocation:(NSInvocation *)invocation
{
[invocation invokeWithTarget:self.target];
}
GCD定时器(推荐使用)
NSTimer依赖于RunLoop,如果RunLoop的任务过于繁重,可能会导致NSTimer不准时
而GCD的定时器会更加准时
@implementation LQTimer
static NSMutableDictionary *timers_;
dispatch_semaphore_t semaphore_;
+ (void)initialize
{
static dispatch_once_t onceToken;
dispatch_once(&onceToken, ^{
timers_ = [NSMutableDictionary dictionary];
semaphore_ = dispatch_semaphore_create(1);
});
}
+ (NSString *)execTask:(void (^)(void))task start:(NSTimeInterval)start interval:(NSTimeInterval)interval repeats:(BOOL)repeats async:(BOOL)async
{
if (!task || start < 0 || (interval <= 0 && repeats)) return nil;
// 队列
dispatch_queue_t queue = async ? dispatch_get_global_queue(0, 0) : dispatch_get_main_queue();
// 创建定时器
dispatch_source_t timer = dispatch_source_create(DISPATCH_SOURCE_TYPE_TIMER, 0, 0, queue);
// 设置时间
dispatch_source_set_timer(timer,
dispatch_time(DISPATCH_TIME_NOW, start * NSEC_PER_SEC),
interval * NSEC_PER_SEC, 0);
dispatch_semaphore_wait(semaphore_, DISPATCH_TIME_FOREVER);
// 定时器的唯一标识
NSString *name = [NSString stringWithFormat:@"%zd", timers_.count];
// 存放到字典中
timers_[name] = timer;
dispatch_semaphore_signal(semaphore_);
// 设置回调
dispatch_source_set_event_handler(timer, ^{
task();
if (!repeats) { // 不重复的任务
[self cancelTask:name];
}
});
// 启动定时器
dispatch_resume(timer);
return name;
}
+ (NSString *)execTask:(id)target selector:(SEL)selector start:(NSTimeInterval)start interval:(NSTimeInterval)interval repeats:(BOOL)repeats async:(BOOL)async
{
if (!target || !selector) return nil;
return [self execTask:^{
if ([target respondsToSelector:selector]) {
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Warc-performSelector-leaks"
[target performSelector:selector];
#pragma clang diagnostic pop
}
} start:start interval:interval repeats:repeats async:async];
}
+ (void)cancelTask:(NSString *)name
{
if (name.length == 0) return;
dispatch_semaphore_wait(semaphore_, DISPATCH_TIME_FOREVER);
dispatch_source_t timer = timers_[name];
if (timer) {
dispatch_source_cancel(timer);
[timers_ removeObjectForKey:name];
}
dispatch_semaphore_signal(semaphore_);
}
@end
iOS程序的内存布局
==代码段==:编译之后的代码
-
==数据段==
- 字符串常量:比如NSString *str = @"test"
- 已初始化数据:已初始化的全局变量、静态变量等
- 未初始化数据:未初始化的全局变量、静态变量等
==栈==:函数调用开销,比如局部变量。分配的内存空间地址越来越小
==堆==:通过alloc、malloc、calloc等动态分配的空间,分配的内存空间地址越来越大
int a = 10;
int b;
int main(int argc, char * argv[]) {
@autoreleasepool {
static int c = 20;
static int d;
int e;
int f = 20;
NSString *str = @"123";
NSObject *obj = [[NSObject alloc] init];
NSLog(@"\n&a=%p\n&b=%p\n&c=%p\n&d=%p\n&e=%p\n&f=%p\nstr=%p\nobj=%p\n",
&a, &b, &c, &d, &e, &f, str, obj);
return UIApplicationMain(argc, argv, nil, NSStringFromClass([AppDelegate class]));
}
}
/*
字符串常量
str=0x10dfa0068
已初始化的全局变量、静态变量
&a =0x10dfa0db8
&c =0x10dfa0dbc
未初始化的全局变量、静态变量
&d =0x10dfa0e80
&b =0x10dfa0e84
堆
obj=0x608000012210
栈
&f =0x7ffee1c60fe0
&e =0x7ffee1c60fe4
*/
Tagged Pointer
从64bit开始,iOS引入了Tagged Pointer技术,用于优化NSNumber、NSDate、NSString等小对象的存储
在没有使用Tagged Pointer之前, NSNumber等对象需要动态分配内存、维护引用计数等,NSNumber指针存储的是堆中NSNumber对象的地址值
使用Tagged Pointer之后,NSNumber指针里面存储的数据变成了:Tag + Data,也就是将数据直接存储在了指针中
当指针不够存储数据时,才会使用动态分配内存的方式来存储数据
objc_msgSend能识别Tagged Pointer,比如NSNumber的intValue方法,直接从指针提取数据,节省了以前的调用开销
如何判断一个指针是否为Tagged Pointer?
iOS平台,最高有效位是1(第64bit)
Mac平台,最低有效位是1
NSNumber *number1 = @4;
NSNumber *number2 = @5;
NSNumber *number3 = @(0xFFFFFFFFFFFFFFF);
NSLog(@"%p %p %p", number1, number2, number3);
打印结果:0x427 0x527 0x1028009e0
判断是否为Tagged Pointer
#if TARGET_OS_OSX && __x86_64__
// 64-bit Mac - tag bit is LSB
# define OBJC_MSB_TAGGED_POINTERS 0
#else
// Everything else - tag bit is MSB
# define OBJC_MSB_TAGGED_POINTERS 1
#endif
#if OBJC_MSB_TAGGED_POINTERS
# define _OBJC_TAG_MASK (1UL<<63)
#else
# define _OBJC_TAG_MASK 1UL
#endif
OC对象的内存管理
- 在iOS中,使用引用计数来管理OC对象的内存
- 一个新创建的OC对象引用计数默认是1,当引用计数减为0,OC对象就会销毁,释放其占用的内存空间
- 调用retain会让OC对象的引用计数+1,调用release会让OC对象的引用计数-1
- 内存管理的经验总结
- 当调用alloc、new、copy、mutableCopy方法返回了一个对象,在不需要这个对象时,要调用release或者autorelease来释放它
- 想拥有某个对象,就让它的引用计数+1;不想再拥有某个对象,就让它的引用计数-1
- 可以通过以下私有函数来查看自动释放池的情况
extern void _objc_autoreleasePoolPrint(void);
copy和mutableCopy
MRC copy对象的写法
- (void)setData:(NSArray *)data
{
if (_data != data) {
[_data release];
_data = [data copy];
}
}
- (void)dealloc
{
self.data = nil;
[super dealloc];
}
引用计数的存储
struct SideTable {
spinlock_t slock;
RefcountMap refcnts;
weak_table_t weak_table;
SideTable() {
memset(&weak_table, 0, sizeof(weak_table));
}
~SideTable() {
_objc_fatal("Do not delete SideTable.");
}
void lock() { slock.lock(); }
void unlock() { slock.unlock(); }
void forceReset() { slock.forceReset(); }
// Address-ordered lock discipline for a pair of side tables.
template
static void lockTwo(SideTable *lock1, SideTable *lock2);
template
static void unlockTwo(SideTable *lock1, SideTable *lock2);
};
在64bit中,引用计数可以直接存储在优化过的isa指针中,也可能存储在SideTable类中
refcnts是一个存放着对象引用计数的散列表
ARC是LLVM编译器和Runtime系统相互协作的一个结果
dealloc
当一个对象要释放时,会自动调用dealloc,接下的调用轨迹是
- dealloc
- _objc_rootDealloc
- rootDealloc
- object_dispose
- objc_destructInstance、free
// Replaced by NSZombies
- (void)dealloc {
_objc_rootDealloc(self);
}
void
_objc_rootDealloc(id obj)
{
assert(obj);
obj->rootDealloc();
}
inline void
objc_object::rootDealloc()
{
if (isTaggedPointer()) return; // fixme necessary?
if (fastpath(isa.nonpointer &&
!isa.weakly_referenced &&
!isa.has_assoc &&
!isa.has_cxx_dtor &&
!isa.has_sidetable_rc))
{
assert(!sidetable_present());
free(this);
}
else {
object_dispose((id)this);
}
}
id
object_dispose(id obj)
{
if (!obj) return nil;
objc_destructInstance(obj);
free(obj);
return nil;
}
void *objc_destructInstance(id obj)
{
if (obj) {
// Read all of the flags at once for performance.
bool cxx = obj->hasCxxDtor();
bool assoc = obj->hasAssociatedObjects();
// This order is important.
if (cxx) object_cxxDestruct(obj);//清除成员变量
if (assoc) _object_remove_assocations(obj);//清理关联对象
obj->clearDeallocating();//将指向当前对象的若指针置为nil
}
return obj;
}
void object_cxxDestruct(id obj)
{
if (!obj) return;
if (obj->isTaggedPointer()) return;//如果是TaggedPointer,不需要处理
object_cxxDestructFromClass(obj, obj->ISA());
}
static void object_cxxDestructFromClass(id obj, Class cls)
{
void (*dtor)(id);
// Call cls's dtor first, then superclasses's dtors.
for ( ; cls; cls = cls->superclass) {
if (!cls->hasCxxDtor()) return;
dtor = (void(*)(id))
lookupMethodInClassAndLoadCache(cls, SEL_cxx_destruct);
if (dtor != (void(*)(id))_objc_msgForward_impcache) {
if (PrintCxxCtors) {
_objc_inform("CXX: calling C++ destructors for class %s",
cls->nameForLogging());
}
(*dtor)(obj);
}
}
}
objc_object::clearDeallocating_slow()
{
assert(isa.nonpointer && (isa.weakly_referenced || isa.has_sidetable_rc));
SideTable& table = SideTables()[this];
table.lock();
if (isa.weakly_referenced) {
weak_clear_no_lock(&table.weak_table, (id)this);
}
if (isa.has_sidetable_rc) {
table.refcnts.erase(this);//擦除
}
table.unlock();
}
自动释放池
自动释放池的主要底层数据结构是:==__AtAutoreleasePool==、==AutoreleasePoolPage==
调用了==autorelease==的对象最终都是通过==AutoreleasePoolPage==对象来管理的
struct __AtAutoreleasePool {
__AtAutoreleasePool() { // 构造函数,在创建结构体的时候调用
atautoreleasepoolobj = objc_autoreleasePoolPush();
}
~__AtAutoreleasePool() { // 析构函数,在结构体销毁的时候调用
objc_autoreleasePoolPop(atautoreleasepoolobj);
}
void * atautoreleasepoolobj;
};
{
__AtAutoreleasePool __autoreleasepool;
LQPerson *person = ((LQPerson *(*)(id, SEL))(void *)objc_msgSend)((id)((LQPerson *(*)(id, SEL))(void *)objc_msgSend)((id)((LQPerson *(*)(id, SEL))(void *)objc_msgSend)((id)objc_getClass("LQPerson"), sel_registerName("alloc")), sel_registerName("init")), sel_registerName("autorelease"));
}
atautoreleasepoolobj = objc_autoreleasePoolPush();
LQPerson *person = [[[LQPerson alloc] init] autorelease];
objc_autoreleasePoolPop(atautoreleasepoolobj);
void *
objc_autoreleasePoolPush(void)
{
return AutoreleasePoolPage::push();
}
void
objc_autoreleasePoolPop(void *ctxt)
{
AutoreleasePoolPage::pop(ctxt);
}
static inline void *push()
{
id *dest;
if (DebugPoolAllocation) {
// Each autorelease pool starts on a new pool page.
dest = autoreleaseNewPage(POOL_BOUNDARY);
} else {
dest = autoreleaseFast(POOL_BOUNDARY);
}
assert(dest == EMPTY_POOL_PLACEHOLDER || *dest == POOL_BOUNDARY);
return dest;
}
static inline id *autoreleaseFast(id obj)
{
AutoreleasePoolPage *page = hotPage();
if (page && !page->full()) {
return page->add(obj);
} else if (page) {
return autoreleaseFullPage(obj, page);
} else {
return autoreleaseNoPage(obj);
}
}
源码分析
clang重写@autoreleasepool
objc4源码:NSObject.mm
class AutoreleasePoolPage
{
magic_t const magic;
id *next;
pthread_t const thread;
AutoreleasePoolPage * const parent;
AutoreleasePoolPage *child;
uint32_t const depth;
uint32_t hiwat;
}
AutoreleasePoolPage的结构
每个AutoreleasePoolPage对象占用4096字节内存,除了用来存放它内部的成员变量,剩下的空间用来存放autorelease对象的地址
所有的AutoreleasePoolPage对象通过双向链表的形式连接在一起
调用push方法会将一个POOL_BOUNDARY入栈,并且返回其存放的内存地址
调用pop方法时传入一个POOL_BOUNDARY的内存地址,会从最后一个入栈的对象开始发送release消息,直到遇到这个POOL_BOUNDARY
id *next指向了下一个能存放autorelease对象地址的区域
int main(int argc, const char * argv[]) {
@autoreleasepool {
atautoreleasepoolobj = objc_autoreleasePoolPush();//
for (int i = 0; i < 1000; i++) {
LQPerson *person = [[[LQPerson alloc] init] autorelease];
} // 8000个字节
objc_autoreleasePoolPop(atautoreleasepoolobj);
}
return 0;
}
超过(4096 - 56)个字节就会进行分页存储
_objc_autoreleasePoolPrint();函数调用打印
objc[58713]: ##############
objc[58713]: AUTORELEASE POOLS for thread 0x100393380
objc[58713]: 606 releases pending.
objc[58713]: [0x102803000] ................ PAGE (full) (cold)
objc[58713]: [0x102803038] ################ POOL 0x102803038
objc[58713]: [0x102803040] 0x102002ea0 LQPerson
objc[58713]: [0x102803048] 0x102009d00 LQPerson
objc[58713]: [0x102803050] ################ POOL 0x102803050
...
objc[58713]: [0x103803000] ................ PAGE (hot)
objc[58713]: [0x103803038] 0x100506480 LQPerson
...
objc[58713]: [0x103803350] ################ POOL 0x103803350
objc[58713]: [0x103803358] 0x100506ab0 LQPerson
objc[58713]: ##############
PAGE (hot) 代表当前正在使用的页
autorelease时机
- (void)viewDidLoad {
[super viewDidLoad];
//什么时候调用release,是由RunLoop来控制的
//它可能是在某次RunLoop循环中,RunLoop休眠之前调用了release
//LQPerson *person = [[[LQPerson alloc] init] autorelease];
LQPerson *person = [[LQPerson alloc] init];
NSLog(@"%s", __func__);
}
typedef CF_OPTIONS(CFOptionFlags, CFRunLoopActivity) {
kCFRunLoopEntry = (1UL << 0), 1
kCFRunLoopBeforeTimers = (1UL << 1), 2
kCFRunLoopBeforeSources = (1UL << 2), 4
kCFRunLoopBeforeWaiting = (1UL << 5), 32
kCFRunLoopAfterWaiting = (1UL << 6), 64
kCFRunLoopExit = (1UL << 7), 128
kCFRunLoopAllActivities = 0x0FFFFFFFU
};
kCFRunLoopEntry push
{valid = Yes, activities = 0x1, repeats = Yes, order = -2147483647, callout = _wrapRunLoopWithAutoreleasePoolHandler (0x103376df2), context = {type = mutable-small, count = 1, values = (\n\t0 : <0x7fd0bf802048>\n)}}
kCFRunLoopBeforeWaiting | kCFRunLoopExit
kCFRunLoopBeforeWaiting pop、push
kCFRunLoopExit pop
{valid = Yes, activities = 0xa0, repeats = Yes, order = 2147483647, callout = _wrapRunLoopWithAutoreleasePoolHandler (0x103376df2), context = {type = mutable-small, count = 1, values = (\n\t0 : <0x7fd0bf802048>\n)}}
Runloop和Autorelease
iOS在主线程的Runloop中注册了2个Observer
- 第1个Observer监听了kCFRunLoopEntry事件,会调用objc_autoreleasePoolPush()
- 第2个Observer
- 监听了kCFRunLoopBeforeWaiting事件,会调用objc_autoreleasePoolPop()、objc_autoreleasePoolPush()
- 监听了kCFRunLoopBeforeExit事件,会调用objc_autoreleasePoolPop()
对象,通过内存对齐,一定是16的倍数,最低有效位是0
objc_messageSend里面封装的,是否为
static inline bool
_objc_isTaggedPointer(const void * _Nullable ptr)
{
return ((uintptr_t)ptr & _OBJC_TAG_MASK) == _OBJC_TAG_MASK;
}
objc_object::rootRelease(bool performDealloc, bool handleUnderflow)
{
//检查是否为TaggedPointer
if (isTaggedPointer()) return false;
inline uintptr_t
objc_object::rootRetainCount()
{
if (isTaggedPointer()) return (uintptr_t)this;
sidetable_lock();
isa_t bits = LoadExclusive(&isa.bits);
ClearExclusive(&isa.bits);
if (bits.nonpointer) {
uintptr_t rc = 1 + bits.extra_rc;
if (bits.has_sidetable_rc) {
rc += sidetable_getExtraRC_nolock();
}
sidetable_unlock();
return rc;
}
sidetable_unlock();
return sidetable_retainCount();
}