【时间序列分析】差分运算及延迟算子的性质

差分运算

  • 一阶差分: ∇ x t = x t − x t − 1 \nabla{x_t}=x_t - x_{t-1} xt=xtxt1
  • P阶差分: ∇ p x t = ∇ p − 1 x t − ∇ p − 1 x t − 1 \nabla^p{x_t}=\nabla^{p-1}x_t - \nabla^{p-1}x_{t-1} pxt=p1xtp1xt1
  • k步差分: ∇ k = x t − x t − k \nabla_k=x_t - x_{t-k} k=xtxtk

延迟算子

延迟算子类似于一个时间指针,当前序列诚意一个延迟算子,就相当于把当前序列值的时间向过去拨了一个时刻
记 p 为延迟算子,则有 X t − p = B p X t , ∀ p ≥ 1 X_{t-p}=B^pX_t,\forall{p}\geq1 Xtp=BpXt,p1 , 则有:
一阶差分: ∇ x t = x t − x t − 1 = ( 1 − B ) x t \nabla{x_t}=x_t - x_{t-1}=(1-B)x_t xt=xtxt1=(1B)xt
二阶差分: ∇ 2 x t = ∇ x t − ∇ x t − 1 = ( x t − x t − 1 ) − ( x t − 1 − x t − 2 ) = x t − 2 x t − 1 + x t − 2 = ( 1 − 2 B + B 2 ) x t = ( 1 − B ) 2 x t \nabla^2{x_t}=\nabla x_t - \nabla x_{t-1} = (x_t - x_{t-1}) - (x_{t-1} - x_{t-2}) = x_t - 2x_{t-1} + x_{t-2} = (1-2B + B^2)x_t = (1-B)^2 x_t 2xt=xtxt1=(xtxt1)(xt1xt2)=xt2xt1+xt2=(12B+B2)xt=(1B)2xt
p阶差分: ∇ p x t = ∇ p − 1 x t − ∇ p − 1 x t − 1 = ( 1 − B ) P x t = ∑ i = 0 p ( − 1 ) p C p i x ( t − i ) \nabla^p{x_t}=\nabla^{p-1}x_t - \nabla^{p-1}x_{t-1} = (1-B)^Px_t=\sum_{i=0}^{p}{(-1)^p C_{p}^i x_(t-i)} pxt=p1xtp1xt1=(1B)Pxt=i=0p(1)pCpix(ti)
k步差分: ∇ k = x t − x t − k = ( 1 − B k ) x t \nabla_k=x_t - x_{t-k} = (1 - B^k)x_t k=xtxtk=(1Bk)xt
延迟算子的性质
{ B 0 = 1 B ( c ⋅ x t ) = c ⋅ B ( x t ) = c ⋅ x t − 1 , c 为 任 意 常 数 B ( x t ± y t ) = x t − 1 ± y t − 1 B n x t = x t − n ( 1 − B ) n = ∑ i = 0 n ( − 1 ) n C n i B i , 其 中 C n i = n ! i ! ( n − i ) ! \left\{ \begin{aligned} B^0=1 \\ B(c\cdot x_t) &= c \cdot B(x_t) = c \cdot x_{t-1}, c为任意常数\\ B(x_t \pm y_t) &= x_{t-1} \pm y_{t-1} \\ B^n x_t &= x_{t-n} \\ (1-B)^n &= \sum_{i=0}^{n}{(-1)^n C_{n}^{i} B^i}, 其中 C_{n}^i = \frac{n!}{i!(n-i)!}\\ \end{aligned} \right. B0=1B(cxt)B(xt±yt)Bnxt(1B)n=cB(xt)=cxt1,c=xt1±yt1=xtn=i=0n(1)nCniBi,Cni=i!(ni)!n!

线性差分方程

z t + a 1 z t − 1 + a 2 z t − 2 + . . . + a p z t − p = h ( t ) z_t + a_1z_{t-1} + a_2z_{t-2} + ... + a_pz_{t-p} = h(t) zt+a1zt1+a2zt2+...+apztp=h(t)

齐次线性差分方程

z t + a 1 z t − 1 + a 2 z t − 2 + . . . + a p z t − p = 0 z_t + a_1z_{t-1} + a_2z_{t-2} + ... + a_pz_{t-p} = 0 zt+a1zt1+a2zt2+...+apztp=0
齐次线性差分方程的解(利用特征方程求解)
λ p \lambda^p λp 替代 z t z_t zt , 得到 λ p + a 1 λ p − 1 + a 2 λ p − 2 + . . . + a p = 0 \lambda^p + a_1\lambda^{p-1} + a_2\lambda^{p-2} + ... + a_p= 0 λp+a1λp1+a2λp2+...+ap=0
特征方程的根称为特征根,记作 λ 1 , λ 2 , . . . , λ p \lambda_1, \lambda_2,..., \lambda_p λ1,λ2,...,λp

齐次线性差分方程的通解

  • 不相等实数根场合
    z t = c 1 λ 1 t + c 2 λ 2 t + . . . + c p λ p t z_t =c_1 \lambda_{1}^{t} + c_2 \lambda_{2}^{t}+ ...+ c_p \lambda_{p}^{t} zt=c1λ1t+c2λ2t+...+cpλpt
  • 有相等实根场合
    z t = ( c 1 + c 2 t + . . . + c d t d − 1 ) λ 1 t + c d + 1 λ d + 1 t + . . . + c p λ p t z_t =(c_1 + c_2 t+ ...+ c_dt^{d-1})\lambda_{1}^{t} + c_{d+1}\lambda^{t}_{d+1} + ...+ c_p\lambda_{p}^t zt=(c1+c2t+...+cdtd1)λ1t+cd+1λd+1t+...+cpλpt
  • 复根场合
    z t = r t ( c 1 e i t ω + c 2 e − i t ω ) + c 3 λ 3 t + . . . + c p λ p t z_t = r^t(c_1e^{it\omega} + c_2e^{-it\omega}) + c_3\lambda_{3}^t +...+c_p\lambda_{p}^t zt=rt(c1eitω+c2eitω)+c3λ3t+...+cpλpt

非齐次线性差分方程的特解 z t ′ ′ z_{t}^{''} zt (使得非齐次线性差分方程城里的任意一个解)

z t ′ ′ + a 1 z t − 1 ′ ′ + a 2 z t − 2 ′ ′ + . . . + a p z t − p ′ ′ = h ( t ) z_{t}^{''} +a_1z_{t-1}^{''} + a_2z_{t-2}^{''} +...+ a_pz_{t-p}^{''} = h(t) zt+a1zt1+a2zt2+...+apztp=h(t)
非齐次线性差分方程的通解 z t z_t zt
齐次线性差分方程的通解和非齐次线性差分方程的特解之和
z t = z t ′ + z t ′ ′ z_t = z_{t}^{'} + z_{t}^{''} zt=zt+zt

你可能感兴趣的:(时间序列分析)