延迟算子类似于一个时间指针,当前序列诚意一个延迟算子,就相当于把当前序列值的时间向过去拨了一个时刻
记 p 为延迟算子,则有 X t − p = B p X t , ∀ p ≥ 1 X_{t-p}=B^pX_t,\forall{p}\geq1 Xt−p=BpXt,∀p≥1 , 则有:
一阶差分: ∇ x t = x t − x t − 1 = ( 1 − B ) x t \nabla{x_t}=x_t - x_{t-1}=(1-B)x_t ∇xt=xt−xt−1=(1−B)xt
二阶差分: ∇ 2 x t = ∇ x t − ∇ x t − 1 = ( x t − x t − 1 ) − ( x t − 1 − x t − 2 ) = x t − 2 x t − 1 + x t − 2 = ( 1 − 2 B + B 2 ) x t = ( 1 − B ) 2 x t \nabla^2{x_t}=\nabla x_t - \nabla x_{t-1} = (x_t - x_{t-1}) - (x_{t-1} - x_{t-2}) = x_t - 2x_{t-1} + x_{t-2} = (1-2B + B^2)x_t = (1-B)^2 x_t ∇2xt=∇xt−∇xt−1=(xt−xt−1)−(xt−1−xt−2)=xt−2xt−1+xt−2=(1−2B+B2)xt=(1−B)2xt
p阶差分: ∇ p x t = ∇ p − 1 x t − ∇ p − 1 x t − 1 = ( 1 − B ) P x t = ∑ i = 0 p ( − 1 ) p C p i x ( t − i ) \nabla^p{x_t}=\nabla^{p-1}x_t - \nabla^{p-1}x_{t-1} = (1-B)^Px_t=\sum_{i=0}^{p}{(-1)^p C_{p}^i x_(t-i)} ∇pxt=∇p−1xt−∇p−1xt−1=(1−B)Pxt=∑i=0p(−1)pCpix(t−i)
k步差分: ∇ k = x t − x t − k = ( 1 − B k ) x t \nabla_k=x_t - x_{t-k} = (1 - B^k)x_t ∇k=xt−xt−k=(1−Bk)xt
延迟算子的性质
{ B 0 = 1 B ( c ⋅ x t ) = c ⋅ B ( x t ) = c ⋅ x t − 1 , c 为 任 意 常 数 B ( x t ± y t ) = x t − 1 ± y t − 1 B n x t = x t − n ( 1 − B ) n = ∑ i = 0 n ( − 1 ) n C n i B i , 其 中 C n i = n ! i ! ( n − i ) ! \left\{ \begin{aligned} B^0=1 \\ B(c\cdot x_t) &= c \cdot B(x_t) = c \cdot x_{t-1}, c为任意常数\\ B(x_t \pm y_t) &= x_{t-1} \pm y_{t-1} \\ B^n x_t &= x_{t-n} \\ (1-B)^n &= \sum_{i=0}^{n}{(-1)^n C_{n}^{i} B^i}, 其中 C_{n}^i = \frac{n!}{i!(n-i)!}\\ \end{aligned} \right. ⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧B0=1B(c⋅xt)B(xt±yt)Bnxt(1−B)n=c⋅B(xt)=c⋅xt−1,c为任意常数=xt−1±yt−1=xt−n=i=0∑n(−1)nCniBi,其中Cni=i!(n−i)!n!
z t + a 1 z t − 1 + a 2 z t − 2 + . . . + a p z t − p = h ( t ) z_t + a_1z_{t-1} + a_2z_{t-2} + ... + a_pz_{t-p} = h(t) zt+a1zt−1+a2zt−2+...+apzt−p=h(t)
z t + a 1 z t − 1 + a 2 z t − 2 + . . . + a p z t − p = 0 z_t + a_1z_{t-1} + a_2z_{t-2} + ... + a_pz_{t-p} = 0 zt+a1zt−1+a2zt−2+...+apzt−p=0
齐次线性差分方程的解(利用特征方程求解)
用 λ p \lambda^p λp 替代 z t z_t zt , 得到 λ p + a 1 λ p − 1 + a 2 λ p − 2 + . . . + a p = 0 \lambda^p + a_1\lambda^{p-1} + a_2\lambda^{p-2} + ... + a_p= 0 λp+a1λp−1+a2λp−2+...+ap=0
特征方程的根称为特征根,记作 λ 1 , λ 2 , . . . , λ p \lambda_1, \lambda_2,..., \lambda_p λ1,λ2,...,λp
z t ′ ′ + a 1 z t − 1 ′ ′ + a 2 z t − 2 ′ ′ + . . . + a p z t − p ′ ′ = h ( t ) z_{t}^{''} +a_1z_{t-1}^{''} + a_2z_{t-2}^{''} +...+ a_pz_{t-p}^{''} = h(t) zt′′+a1zt−1′′+a2zt−2′′+...+apzt−p′′=h(t)
非齐次线性差分方程的通解 z t z_t zt
齐次线性差分方程的通解和非齐次线性差分方程的特解之和
z t = z t ′ + z t ′ ′ z_t = z_{t}^{'} + z_{t}^{''} zt=zt′+zt′′