**欢迎访问我自己的博客网站:[www.fengwanqing.xin](http://www.fengwanqing.xin)**
最近在学习GUI编程,想要寻找一个画图非常漂亮的库,偶然间发现了PyQtGraph库!用这个库做出来的图非常漂亮!给大家展示一下:
最近都在钻研这个库,但是没有中文文档,所以笔者就一边看英文文档顺便翻译一下,方便以后查阅(说白了就是英语不好!不能一眼扫到想查的东西!)咳咳~~后续可能还会写一下自己GUI编程的心得。
PyQtGraph是纯Python图形GUI库,它充分利用PyQt和PtSide的高质量的图形表现水平和NumPy的快速科学计算与处理能力,在数学、科学和工程领域都有广泛的应用。 其主要目标是:
PyQtGraph被大量应用于Qt GUI平台(通过PyQt或PySide),因为它的高性能图形和numpy可用于大量数据处理。 特别注意的是,pyqtgraph使用了Qt的GraphicsView框架,它本身是一个功能强大的图形系统; 我们将最优化和简化的语句应用到这个框架中,以最小的工作量实现数据可视化。
支持Linux,Windows和OSX系统
pyqtgraph的核心特征是:
PyQtGraph包含一系列可通过运行来访问的示例:
import pyqtgraph.examples
pyqtgraph.examples.run()
这将启动一个启动器并列出可用的示例。 从列表中选择一个项目以查看其源代码,然后双击一个项目以运行该示例。
注意如果你已经用python setup.py开发安装pyqtgraph,那么这些例子就会被错误地提示为top-level module。 在这种情况下,使用导入示例:examples.run()。
大多数使用pyqtgraph数据可视化的应用程序都会生成可交互缩放,平移和使用鼠标配置的小部件。 本节介绍鼠标与这些小部件的交互。
在pyqtgraph中,大多数2D可视化遵循以下鼠标交互:
对于使用右侧或中间按钮拖动很困难的机器(通常是Mac),存在另一种鼠标交互模式。 在此模式下,用鼠标左键拖动可在场景的某个区域上绘制一个框。 按钮释放后,场景将缩放并平移以适合框。 可以在上下文菜单中或通过调用以下方式访问此模式:
pyqtgraph.setConfigOption('leftButtonPan', False)
右键单击大多数场景将显示一个上下文菜单,其中包含用于更改场景行为的各种选项。 这个菜单中的一些选项是:
菜单中可用的确切项目取决于场景的内容和点击的对象。
3D可视化使用以下鼠标交互:
键盘控制:
这里有几个建议使用pyqtgraph的方法:
PyQtGraph使得从命令行可视化数据变得非常容易。注意:
import pyqtgraph as pg
pg.plot(data) # data can be a list of values or a numpy array
上面的例子将打开一个窗口,显示给定数据的线图。 对pg.plot的调用返回创建的绘图窗口小部件的句柄,从而允许将更多数据添加到同一个窗口。 注意:python提示符中的交互式绘图仅适用于PyQt; 在交互式提示符运行时,PySide不运行Qt事件循环。 如果你想与PySide交互使用pyqtgraph,请参阅'console'示例。
其他例子:
pw = pg.plot(xVals, yVals, pen='r') # plot x vs y in red
pw.plot(xVals, yVals2, pen='b')
win = pg.GraphicsWindow() # Automatically generates grids with multiple items
win.addPlot(data1, row=0, col=0)
win.addPlot(data2, row=0, col=1)
win.addPlot(data3, row=1, col=0, colspan=2)
pg.show(imageData) # imageData must be a numpy array with 2 to 4 dimensions
我们在这里只是展示最基本的用法 - 这些函数接受许多不同的数据格式和选项来自定义数据的外观。
虽然我认为这种方法有些懒惰,但“懒惰”往往与“高效”无法区分。 这里的方法很简单,就是使用与命令行相同的功能,但是在现有的应用程序中使用。 当我只是想立即获得关于应用程序中数据状态的反馈时,我经常使用它,而无需花时间为其构建用户界面。
对于认真的应用程序开发人员来说,pyqtgraph中的所有功能都可以通过像其他任何Qt小部件一样嵌入来使用。 更多的重要信息,请参阅:``lotWidget``,``ImageView``,``GraphicsLayoutWidget``和``GraphicsView``。 PyQtGraph的小部件可以通过“Promote To ...”功能包含在Designer的ui文件中:
有关promoting widgets的更多信息,请参阅设计器文档。“VideoSpeedTest”和“ScatterPlotSpeedTest”示例都演示了如何使用pyui4或pyside-uic编译为.py模块的.ui文件。“designerExample”示例演示从.ui文件动态生成python类(不需要pyuic4 / pyside-uic)。
PyQtGraph支持两种常用的Qt库python包:PyQt和PySide。 这两个软件包提供了几乎相同的API和功能,但由于各种原因,您可能更喜欢使用一个软件包或其他软件包。 当第一次导入pyqtgraph时,它会通过一下检测来确定使用哪个库:
如果你的系统上已经安装了这两个库,并且你想强制pyqtgraph使用其中一个或者另一个,只需确保它在pyqtgraph之前被导入:
import PySide ## this will force pyqtgraph to use PySide instead of PyQt4
import pyqtgraph as pg
在编写使用pyqtgraph的应用程序或python包时,通常在系统范围内(或在virtualenv中)安装pyqtgraph,并在应用程序内调用import pyqtgraph。 这样做的主要好处是pyqtgraph是独立于应用程序进行配置的,因此您(或您的用户)可以自由安装较新版本的pyqtgraph,而无需在应用程序中更改任何内容。 这是用python开发时的标准做法。
然而,特别是对于科学应用来说,情况也是如此,即软件是为特定目的而编写的,然后进行存档。如果我们想要确保软件在十年后仍能正常工作,那么最好将应用程序绑定到一个特定版本的pyqtgraph上,并避免导入系统安装的pyqtgraph版本,这可能会更新(可能不兼容)。尤其当应用程序需要对主要版本中可能不存在的pyqtgraph软件包进行特定的修改时,情况如此。
PyQtGraph通过两种机制来促进这种用法。首先,pyqtgraph中的所有内部导入语句都是相对的,它允许将包重命名或用作子包,而不会与系统中其他版本的pyqtgraph产生任何命名冲突(即,pyqtgraph从未在内部将其自身称为“pyqtgraph ”)。其次,可以在 https://github.com/pyqtgraph/pyqtgraph-core.git 找到一个git树状子目录存储库,它只包含'pyqtgraph /'树状子目录,允许将代码直接克隆为使用它的应用程序的子目录。
基本的方法是将存储库克隆到包中的适当位置。从包中导入pyqtgraph时,一定要使用全名来避免导入任何系统安装的pyqtgraph包。例如,假设一个简单的项目具有以下结构:
my_project/
__init__.py
plotting.py
"""Plotting functions used by this package"""
import pyqtgraph as pg
def my_plot_function(*data):
pg.plot(*data)
要导入特定版本的pyqtgraph,我们将克隆项目中的pyqtgraph-core存储库:
my_project$ git clone https://github.com/pyqtgraph/pyqtgraph-core.git
然后相应地调整导入语句:
my_project/
__init__.py
pyqtgraph/
plotting.py
"""Plotting functions used by this package"""
import my_project.pyqtgraph as pg # be sure to use the local subpackage
# rather than any globally-installed
# versions.
def my_plot_function(*data):
pg.plot(*data)
使用 git checkout pyqtgraph-core-x.x.x 选择特定版本的存储库,或使用 git pull 从上游拉取pyqtgraph更新(有关更多信息,请参阅git文档)。
对于已经使用git进行代码控制的项目,也可以在你自己的仓库中包含pyqtgraph作为git树状子目录。 这种方法的主要优点是,除了能够从上游存储库中获取pyqtgraph更新之外,还可以将本地pyqtgraph更改提交到项目存储库并向上游推送这些更改:
my_project$ git remote add pyqtgraph-core https://github.com/pyqtgraph/pyqtgraph-core.git
my_project$ git fetch pyqtgraph-core
my_project$ git merge -s ours --no-commit pyqtgraph-core/core
my_project$ mkdir pyqtgraph
my_project$ git read-tree -u --prefix=pyqtgraph/ pyqtgraph-core/core
my_project$ git commit -m "Added pyqtgraph to project repository"
有关更多信息,请参阅 git subtree 文档。
$ pip install pyqtgraph
有些用户可能需要调用pip3。 这种方法应该适用于所有平台。
$ git clone https://github.com/pyqtgraph/pyqtgraph
现在你可以从源代码安装pyqtgraph:
$ python setup.py install
..或者你可以简单地把pyqtgraph文件夹放置在可导入的地方,比如在另一个项目的根目录中。 PyQtGraph不需要以任何方式“built”或编译。
PyQtGraph依赖于:
满足这些配置的最简单方法是使用pip或像Anaconda这样的科学Python发行版。
后续还会继续更新,敬请期待....