2019 南京网络赛 E. K Sum(莫比乌斯反演 + 杜教筛)

2019 南京网络赛 E. K Sum(莫比乌斯反演 + 杜教筛)_第1张图片


化简 f n ( k ) = ∑ l 1 = 1 n ∑ l 2 = 1 n . . . ∑ l k = 1 n ( g c d ( l 1 , l 2 , . . . , l k ) ) 2 f_n(k)=\sum_{l_1 = 1}^n\sum_{l_2 = 1}^n...\sum_{l_k = 1}^n(gcd(l_1,l_2,...,l_k))^2 fn(k)=l1=1nl2=1n...lk=1n(gcd(l1,l2,...,lk))2 = ∑ d = 1 n ∑ l 1 = 1 n ∑ l 2 = 1 n . . . ∑ l k = 1 n d 2 ∗ [ g c d ( l 1 , l 2 , . . . , l k ) = d ] =\sum_{d = 1}^n\sum_{l_1 = 1}^n\sum_{l_2 = 1}^n...\sum_{l_k = 1}^nd^2*[gcd(l_1,l_2,...,l_k) = d] =d=1nl1=1nl2=1n...lk=1nd2[gcd(l1,l2,...,lk)=d] = ∑ d = 1 n ∑ l 1 = 1 ⌊ n d ⌋ ∑ l 2 = 1 ⌊ n d ⌋ . . . ∑ l k = 1 ⌊ n d ⌋ d 2 ∗ [ g c d ( l 1 , l 2 , . . . , l k ) = 1 ] =\sum_{d = 1}^n\sum_{l_1 = 1}^{\lfloor\frac{n}{d}\rfloor}\sum_{l_2 = 1}^{\lfloor\frac{n}{d}\rfloor}...\sum_{l_k = 1}^{\lfloor\frac{n}{d}\rfloor}d^2*[gcd(l_1,l_2,...,l_k) = 1] =d=1nl1=1dnl2=1dn...lk=1dnd2[gcd(l1,l2,...,lk)=1] = ∑ d = 1 n d 2 ∑ l 1 = 1 ⌊ n d ⌋ ∑ l 2 = 1 ⌊ n d ⌋ . . . ∑ l k = 1 ⌊ n d ⌋ ∑ p ∣ g c d ( l 1 , l 2 , . . . , l k ) μ ( p ) =\sum_{d = 1}^nd^2\sum_{l_1 = 1}^{\lfloor\frac{n}{d}\rfloor}\sum_{l_2 = 1}^{\lfloor\frac{n}{d}\rfloor}...\sum_{l_k = 1}^{\lfloor\frac{n}{d}\rfloor}\sum_{p |gcd(l_1,l_2,...,l_k)}\mu(p) =d=1nd2l1=1dnl2=1dn...lk=1dnpgcd(l1,l2,...,lk)μ(p) = ∑ d = 1 n d 2 ∑ p = 1 ⌊ n d ⌋ μ ( p ) ∑ l 1 = 1 ⌊ n p ∗ d ⌋ ∑ l 2 = 1 ⌊ n p ∗ d ⌋ . . . ∑ l k = 1 ⌊ n p ∗ d ⌋ =\sum_{d = 1}^nd^2\sum_{p = 1}^{\lfloor\frac{n}{d}\rfloor}\mu(p)\sum_{l_1 = 1}^{\lfloor\frac{n}{p * d}\rfloor}\sum_{l_2 = 1}^{\lfloor\frac{n}{p *d}\rfloor}...\sum_{l_k = 1}^{\lfloor\frac{n}{p * d}\rfloor} =d=1nd2p=1dnμ(p)l1=1pdnl2=1pdn...lk=1pdn = ∑ T = 1 n ∑ d ∣ T d 2 ∗ μ ( T d ) ∗ ( ⌊ n T ⌋ ) k =\sum_{T = 1}^n\sum_{d|T}d^2 * \mu(\frac{T}{d})*(\lfloor\frac{n}{T}\rfloor)^k =T=1ndTd2μ(dT)(Tn)k


化简答案式子
∑ i = 2 k f n ( i ) = ∑ i = 2 k ∑ T = 1 n ∑ d ∣ T d 2 ∗ μ ( T d ) ∗ ( ⌊ n T ⌋ ) i \sum_{i = 2}^kf_n(i) = \sum_{i = 2}^k\sum_{T = 1}^n\sum_{d|T}d^2 * \mu(\frac{T}{d})*(\lfloor\frac{n}{T}\rfloor)^i i=2kfn(i)=i=2kT=1ndTd2μ(dT)(Tn)i = ∑ T = 1 n ∑ d ∣ T d 2 ∗ μ ( T d ) ∗ ∑ i = 2 k ( ⌊ n T ⌋ ) i =\sum_{T = 1}^n\sum_{d|T}d^2 * \mu(\frac{T}{d})*\sum_{i = 2}^k(\lfloor\frac{n}{T}\rfloor)^i =T=1ndTd2μ(dT)i=2k(Tn)i
后一项是等比数列求和,可用欧拉定理降幂,特判公比为1的情况。
g ( T ) = ∑ d ∣ T d 2 ∗ μ ( T d ) g(T) = \sum_{d|T}d^2 * \mu(\frac{T}{d}) g(T)=dTd2μ(dT),需要预处理 g g g的前缀和。
首先很明显 g ( T ) g(T) g(T)是一个积性函数在这里插入图片描述
需要预处理大概 1 0 6 10^6 106的前缀和
(不会线性筛也可以用 n log ⁡ n n\log n nlogn的暴力筛,比如我)
因为 g = μ ∗ I d 2 g = \mu*Id^2 g=μId2 g ∗ I = μ ∗ I ∗ I d 2 = I d 2 g * I = \mu * I * Id^2 =Id^2 gI=μIId2=Id2(狄力克雷卷积满足交换律,结合律)
在这里插入图片描述
复杂度: O ( 1 0 6 log ⁡ 1 0 6 + n 2 3 + n log ⁡ ( 1 0 9 ) ) O(10^6\log 10^6 + n^{\frac{2}{3}} +\sqrt n \log (10^9)) O(106log106+n32+n log(109)),第一项取决于筛的方法


代码:

#include
using namespace std;
typedef long long ll;
const int maxn = 1e6 + 10;
const int mod = 1e9 + 7;
char s[maxn];
bool ispri[maxn];
int pri[maxn],sum[maxn],mu[maxn];
int n,k,t;
map<int,int> mp;
int inv6;
void sieve(int n) {
	ispri[0] = ispri[1] = true;
	pri[0] = 0;mu[1] = 1;
	for(int i = 1; i <= n; i++) {
		if(!ispri[i]) pri[++pri[0]] = i,mu[i] = -1;
		for(int j = 1; j <= pri[0] && i * pri[j] <= n; j++) {
			ispri[i * pri[j]] = true;
			if(i % pri[j] == 0) break;
			mu[i * pri[j]] = -mu[i];
		}
	}
	for(int i = 1; i <= n; i++)
		for(int j = 1; i * j <= n; j++)
			sum[i * j] = (sum[i * j] + 1ll * i * i % mod * mu[j] % mod + mod) % mod;
	for(int i = 1; i <= n; i++)
		sum[i] = (sum[i] + sum[i - 1]) % mod;
}
int fpow(int a,int b) {
	int r = 1;
	while(b) {
		if(b & 1) r = 1ll * r * a % mod;
		a = 1ll * a * a % mod;
		b >>= 1;
	}
	return r;
}
int cal(int x) {
	return 1ll * x * (x + 1) % mod * (2 * x + 1) % mod * inv6 % mod;
}
int getsum(int n) {
	if(n <= maxn - 10) return sum[n];
	if(mp[n]) return mp[n];
	int res = cal(n);
	int i,j;
	for(i = 2; i <= n; i = j + 1) {
		j = n / (n / i);
		res = (res - 1ll * getsum(n / i) * (j - i + 1) % mod + mod) % mod;
	}
	return mp[n] = res;
}
int main() {
	sieve(maxn - 10);
	inv6 = fpow(6,mod - 2);
	scanf("%d",&t);
	while(t--) {
		scanf("%d%s",&n,&s);
		int len = strlen(s);
		k = 0;
		int k2 = 0;
		for(int i = 0; i < len; i++) {
			k = (1ll * k * 10 % (mod - 1) + s[i] - '0') % (mod - 1);
			k2 = (1ll * k2 * 10 % mod + s[i] - '0') % mod;		//用来处理公比为 1的情况
		}
		int l,r;
		int ans = 0;
		for(l = 1; l <= n; l = r + 1) {
			r = n / (n / l);
			int p = n / l;
			if(p == 1) 
				ans = (ans + 1ll * (k2 - 1) * ((getsum(r) - getsum(l - 1) + mod) % mod) % mod + mod) % mod;
			else {
				int q = (1 - p + mod) % mod;
				int inv = fpow(q,mod - 2);
				int tmp = (1ll * p * ((1 - fpow(p,k) + mod) % mod) % mod * inv % mod - p + mod) % mod;
				ans = (ans + 1ll * tmp * ((getsum(r) - getsum(l - 1) + mod) % mod) % mod) % mod;
			}
		}
		printf("%d\n",ans);
	}
	return 0;
}

你可能感兴趣的:(莫比乌斯反演,杜教筛,狄力克雷卷积)