1、主成分分析(Principal Component Analysis,PCA)是最常用的一种降维方法,
通常用于高维数据集的探索与可视化,还可以用作数据压缩和预处理
2、PCA可以把具有相关性的高维变量合成为线性无关的低维变量,称为主成分。
主成分能够尽可能保留原始数据的信息
3、概念
方差:用来度量一组数据的分散程度
协方差:用来度量两个变量之间的线性相关性程度,若两个变量的协议差为0,二者线性无关
协方差矩阵:矩阵的特征向量是描述数据集结构的非零向量,?? ⃗=?? ⃗
特征向量和特征值:? ⃗ 特征向量,?是特征值
4、提取:
矩阵的主成分是其协方差矩阵对应的特征向量,按照对应的特征值大小进行排序,最大的特征值就是第一主成分,其次是第二主成分
5、原理:
1、对所有样本进行中心化:xi-(x1+x2…xm)/m
2、计算样本的协方差矩阵X(X.T)
3、对协方差矩阵X(X.T)做特征值分解
4、取最大的d个特征值所对应的特征向量w1,w2…wd
输出投影矩阵W=(w1,w2,…,wd)
6、参数说明
sklearn.decomposition.PCA(n_components=None,copy=True,whithen=False,svd_solver=‘auto’,tol=0.0,
iterated_power=‘auto’,random_state=None)
n_components:指定主成分的个数,即降维后数据的维度
svd_slover:设置特征值分解的方法:‘full’,‘arpack’,‘randomized’
PCA实现高维度数据可视化 实例
目标:
已知鸢尾花数据是4维的,共三类样本,使用PCA实现对鸢尾花数据进行降维,实现在二维平面上的可视化
实例程序编写
import matplotlib.pyplot as plt
import sklearn.decomposition as dp
from sklearn.datasets.base import load_iris
x,y=load_iris(return_X_y=True) #加载数据,x表示数据集中的属性数据,y表示数据标签
pca=dp.PCA(n_components=2) #加载pca算法,设置降维后主成分数目为2
reduced_x=pca.fit_transform(x) #对原始数据进行降维,保存在reduced_x中
red_x,red_y=[],[]
blue_x,blue_y=[],[]
green_x,green_y=[],[]
for i in range(len(reduced_x)): #按鸢尾花的类别将降维后的数据点保存在不同的表表中
if y[i]==0:
red_x.append(reduced_x[i][0])
red_y.append(reduced_x[i][1])
elif y[i]==1:
blue_x.append(reduced_x[i][0])
blue_y.append(reduced_x[i][1])
else:
green_x.append(reduced_x[i][0])
green_y.append(reduced_x[i][1])
plt.scatter(red_x,red_y,c='r',marker='x')
plt.scatter(blue_x,blue_y,c='b',marker='D')
plt.scatter(green_x,green_y,c='g',marker='.')
plt.show()