命令:
vim ~/.bashrc
source ~/.bashrc
ps aux | grep spark
pkill -f "spark"
sudo chown -R sc:sc spark-2.3.1-bin-hadoop2.7/
sudo mv /home/sc/Downloads/spark-2.3.1-bin-hadoop2.7 /opt/
$SPARK_HOME 查看spark的路径
http://mirrors.tuna.tsinghua.edu.cn/apache/spark/spark-2.3.1/spark-2.3.1-bin-hadoop2.7.tgz
None和""在spark sql里都是为null
python funtools 模块常用函数
/home/sc/PycharmProjects/sc/model-feature-engine/biz/sub/dag.py
a = os.path.abspath(os.path.join(__file__, os.pardir, os.pardir))
b = os.pardir
c = os.path.join(__file__)
d1 = os.path.join(__file__,os.pardir)
d2 = os.path.join(__file__,os.pardir,os.pardir)
e1 = os.path.abspath(os.path.join(__file__))
e2 = os.path.abspath(os.path.join(__file__, os.pardir))
print(a)
print(b)
print(c)
print(d1)
print(d2)
print(e1)
print(e2)
结果:
/home/sc/PycharmProjects/sc
..
/home/sc/PycharmProjects/sc/model-feature-engine/temp4.py
/home/sc/PycharmProjects/sc/model-feature-engine/temp4.py/..
/home/sc/PycharmProjects/sc/model-feature-engine/temp4.py/../..
/home/sc/PycharmProjects/sc/model-feature-engine/temp4.py
/home/sc/PycharmProjects/sc/model-feature-engine
Dataframe转RDD
RDD.map(func)
RDD.map(lambda x : func(x))
上面两个的区别;数据结构不一样?????
piplineRDD has no map
数值和键值对RDD
把一个普通的RDD转化为pairRDD,可调用map函数实现,pairRDD
schemaRDD读取数据和执行查询都会返回SchemaRDD。ShemaRDD和传统数据库里面的表类似,从内部机理来看,SchemaRDD是由一个由Row对象组成的RDD,附带包含每类数据类型的结构信息。
Row对象只是对基本数据类型(如证性和字符串型等)数组的封装。SchemaRDD仍然是RDD
/home/sc/PycharmProjects/risk-model/etl_ljt_script/pysparkCsvUtils.py
self.session.sparkContext.textFile
filename = 'judgedoc_litigant.csv'
csvspath = readpath + filename
sqlContext = SQLContext(sparkContext=sc)
df = spark.sparkContext.textFile(csvspath)
print(type(df))
dfrdd = df.map(mapper)
什么情况下是pyspark..rdd
sqlContext = SQLContext(sparkContext=sc)
df = spark.sparkContext.textFile(hdfspath)
print(type(df))
dfrdd = df.map(mapper)
print(type(dfrdd))
from pyspark.sql import SparkSession, SQLContext
from pyspark.sql import Row
from pyspark.sql.functions import udf
from pyspark.sql.types import *
def testjudgedoc(spark, sc):
'''3)裁判文书(judgedoc_litigant.csv):'''
filename = 'judgedoc_litigant.csv'
csvspath = readpath + filename
sqlContext = SQLContext(sparkContext=sc)
df = spark.sparkContext.textFile(csvspath)
if __name__ == '__main__':
spark = SparkSession.builder.master(sparkpath) \
.appName("SC_ETL_ljt_spark").getOrCreate()
sc = spark.sparkContext
sc.addPyFile('pysparkCsvUtils.py')
sc.addPyFile('caseReasonCode.py')
sc.addPyFile('case_reason_reflection.py')
sc.addPyFile('case_reason_map.py')
sc.addPyFile('parse_util.py')
sc.addPyFile('models.py')
sc.addPyFile('parse_money.py')
sc.addPyFile('map_litigant_type.py')
testcourtannouncement(spark, sc)
spark.stop()
import math
if revoke_prob == 1.0:
score = 67
elif revoke_prob == 0.0:
score = -133
else:
score = (-6.78 + 14.13 * math.log(float(revoke_prob) / float(1.0 - revoke_prob)))
score = float((score + 133))/2
return round(score, 2)
In[12]: k1 = -2.78+14.13*math.log(100)
In[13]: k1
Out[13]: 62.291054728011744
In[14]: k1 = -2.78+14.13*math.log(10000)
In[15]: k1
Out[15]: 127.36210945602349
In[16]: k1 = -2.78+14.13*math.log(10000)
In[17]: import scipy.stats as st
In[18]: hyRankXPosition = st.norm.ppf(1, 0.3, 0.1)
In[19]: hyRankXPosition
Out[19]: inf
In[20]: st.norm.ppf(0.5, 0.3, 0.1)
Out[20]: 0.3
In[21]: st.norm.ppf(0.1, 0.3, 0.1)
Out[21]: 0.17184484344553994
In[22]: st.norm.ppf(0.8, 0.3, 0.1)
Out[22]: 0.38416212335729144
In[23]: st.norm.ppf(0.9, 0.3, 0.1)
Out[23]: 0.42815515655446
In[24]: st.norm.ppf(0.9999, 0.3, 0.1)
Out[24]: 0.6719016485455709
In[25]: st.norm.ppf(0.999999999, 0.3, 0.1)
Out[25]: 0.8997807019601636
In[26]: st.norm.ppf(0.9999999999999, 0.3, 0.1)
Out[26]: 1.0348754540300042
WORK_DIR = os.path.abspath(os.path.join(__file__, os.pardir, os.pardir))
_, WORK_PROJ = os.path.split(WORK_DIR)
WORK_ZIP = os.path.join(WORK_DIR, "%s.zip" % WORK_PROJ)
/home/sc/PycharmProjects/sc/model-feature-engine/dag.gv
/home/sc/PycharmProjects/sc/model-feature-engine/biz/spark_session_utils/spark_session_utils.py
HDFS_RISK_MODEL_NOT_DAILY_MID_SAIC +"/share_as_fr.csv"
def bfs(self):
source_set = set([link["source"] for link in self.Links])
target_set = set([link["target"] for link in self.Links])
root = source_set - target_set
not_need_to_run = set([link["target"] for link in self.Links if not link["need_to_run"]])
not_need_to_run_and_exist_set = set([node["id"] for node in self.Nodes if node.get("status") and node["id"] in not_need_to_run])
root = root.union(not_need_to_run_and_exist_set)
step_limit = 10000
pre_set = root
for i in range(step_limit+1):
links_as_pre_source = [link for link in self.Links if link["source"] in pre_set and not link.get("step")]
tmp_target_to_add_pre = set()
for link_as_pre_source in links_as_pre_source:
tmp_source_set = set([link["source"] for link in self.Links if link["target"] == link_as_pre_source["target"]])
if len(tmp_source_set - pre_set) == 0:
link_as_pre_source["step"] = i
tmp_target_to_add_pre.add(link_as_pre_source["target"])
pre_set = pre_set.union(tmp_target_to_add_pre)
to_left_set = target_set - pre_set
to_left_link = [link for link in self.Links if link["target"] in to_left_set]
to_run_links = [link for link in self.Links if link["need_to_run"]]
to_run_links = sorted(to_run_links, key=lambda _: _.get("step"), reverse=False)
return to_left_link, to_run_links
改进:
def bfs(self):
source_set = set([link["source"] for link in self.Links])
target_set = set([link["target"] for link in self.Links])
root = source_set - target_set
step_limit = 10000
pre_set = root
for i in range(1, step_limit+1):
links_as_pre_source = [link for link in self.Links if link["source"] in pre_set and not link.get("step")]
tmp_target_to_add_pre = set()
for link_as_pre_source in links_as_pre_source:
tmp_source_set = set([link["source"] for link in self.Links if link["cls_name"] == link_as_pre_source["cls_name"]])
if len(tmp_source_set - pre_set) == 0:
link_as_pre_source["step"] = i
tmp_target_to_add_pre.add(link_as_pre_source["target"])
pre_set = pre_set.union(tmp_target_to_add_pre)
to_left_set = target_set - pre_set
to_left_link = [link for link in self.Links if link["target"] in to_left_set]
to_run_links = [link for link in self.Links if link["need_to_run"]]
to_run_links = sorted(to_run_links, key=lambda _: _.get("step"), reverse=False)
to_run_links_dif = []
to_run_cls_name_set = set()
for a_t in to_run_links:
if a_t["cls_name"] not in to_run_cls_name_set:
to_run_links_dif.append(a_t)
to_run_cls_name_set.add(a_t["cls_name"])
return to_left_link, to_run_links, to_run_links_dif
、
from conf.conf import SPARK_MASTER_URL, SPARK_TASK_NAME, WORK_ZIP
from pyspark.sql import SparkSession
from biz.sub.dag import SparkTask
import abc
class SparkSessionUtils(SparkTask):
session = SparkSession.builder \
.master(SPARK_MASTER_URL) \
.appName(SPARK_TASK_NAME) \
.getOrCreate()
session.conf.set("spark.driver.maxResultSize", "4g")
session.conf.set("spark.sql.broadcastTimeout", 1200)
session.conf.set("spark.sql.crossJoin.enabled", "true")
@abc.abstractmethod
def run_task(self):
raise NotImplementedError
def _run_task(self):
self.run_task()
self.session.stop()
现在:
from conf.conf import SPARK_MASTER_URL, SPARK_TASK_NAME, WORK_ZIP
from pyspark.sql import SparkSession
from biz.sub.dag import SparkTask
import abc
class SparkSessionUtils(SparkTask):
session = None
def __build_session(self):
session = SparkSession.builder \
.master(SPARK_MASTER_URL) \
.appName(SPARK_TASK_NAME) \
.getOrCreate()
session.conf.set("spark.driver.maxResultSize", "4g")
session.conf.set("spark.sql.broadcastTimeout", 1200)
session.conf.set("spark.sql.crossJoin.enabled", "true")
self.session = session
return self.session
@abc.abstractmethod
def run_task(self):
raise NotImplementedError
def _run_task(self):
self.__build_session()
self.run_task()
self.session.stop()
from conf.all_task_conf import ALL_SPARK_CLASS_TASK
from conf.conf import HDFS_RISK_MODEL_AUTO_RAW
from controller.oslo_utils.importutils import import_class
from biz.sub.dag import TaskDag
from fabric_utils.fabric_utils import FabricHdfsUtils, FabricDbUtils
from scpy.logger import get_logger
from biz.load_raw_data.sub.load_data_to_hdfs import LoadRawData
import json
logger = get_logger(__file__)
class Controller(object):
"""
控制层
负责 查看 执行spark task class 里面的那些表存在那些表不存在
生成计算图,调度计算过程
"""
def __init__(self):
self.task_dag = TaskDag()
self.cls_map = {}
self._task_run_serial = []
self.fabric_hdfs_utils = FabricHdfsUtils()
for cls_dict in ALL_SPARK_CLASS_TASK:
cls_str = cls_dict.get("cls_name")
this_cls = import_class(cls_str)
self.cls_map[cls_str] = this_cls
a_node_dag = getattr(this_cls(), "get_spark_task")()
depend_tables = a_node_dag["depend_tables"]
result_tables = a_node_dag["result_tables"]
self.task_dag.add_nodes(depend_tables+result_tables)
self.task_dag.add_dag(cls_dict, depend_tables, result_tables)
def plot(self):
self.analyse()
self.task_dag.plot(view=True)
def analyse(self):
self.task_dag.set_table_info(self.fabric_hdfs_utils.hdfs_exits)
to_left_link, self._task_run_serial = self.task_dag.bfs()
to_left_tables = [_["target"] for _ in to_left_link]
logger.info("to_left_tables:\n" + json.dumps(to_left_tables, ensure_ascii=False))
def run_all(self):
self.analyse()
for task_dict in self._task_run_serial:
cls_name = task_dict.get("cls_name")
if task_dict.get("need_to_run"):
task = self.cls_map[cls_name]
logger.info("task class %s starts" % cls_name)
getattr(task(), "run_task")()
logger.info("task class %s done" % cls_name)
def run_single(self, cls_name):
task = self.cls_map[cls_name]
getattr(task(), "run_task")()
def load_not_exit(self):
pass
@staticmethod
def reload_all_daily_hdfs():
fabric_hdfs_utils = FabricHdfsUtils()
if fabric_hdfs_utils.hdfs_exits(HDFS_RISK_MODEL_AUTO_RAW):
fabric_hdfs_utils.hdfs_rmr(HDFS_RISK_MODEL_AUTO_RAW)
fabric_hdfs_utils.hdfs_mkdir(HDFS_RISK_MODEL_AUTO_RAW)
LoadRawData().put_all_daily()
@staticmethod
def export_raw_data():
FabricDbUtils().export_all_raw_data_by_sh()
def collect(self):
"""
搜集
"""
pass
def save_all(self):
"""
保存所有数据
:return:
"""
pass
现在:
from conf.all_task_conf import ALL_SPARK_CLASS_TASK
from conf.conf import HDFS_RISK_MODEL_AUTO_RAW
from controller.oslo_utils.importutils import import_class
from biz.sub.dag import TaskDag
from fabric_utils.fabric_utils import FabricHdfsUtils, FabricDbUtils
from scpy.logger import get_logger
from biz.load_raw_data.sub.load_data_to_hdfs import LoadRawData
import json
logger = get_logger(__file__)
class Controller(object):
"""
控制层
负责 查看 执行spark task class 里面的那些表存在那些表不存在
生成计算图,调度计算过程
"""
def __init__(self):
self.task_dag = TaskDag()
self.cls_map = {}
self._task_run_serial = []
self._task_run_serial_edg = []
self.fabric_hdfs_utils = FabricHdfsUtils()
for cls_dict in ALL_SPARK_CLASS_TASK:
cls_str = cls_dict.get("cls_name")
this_cls = import_class(cls_str)
self.cls_map[cls_str] = this_cls
a_node_dag = getattr(this_cls(), "get_spark_task")()
depend_tables = a_node_dag["depend_tables"]
result_tables = a_node_dag["result_tables"]
self.task_dag.add_nodes(depend_tables+result_tables)
self.task_dag.add_dag(cls_dict, depend_tables, result_tables)
def plot(self):
self.analyse()
self.task_dag.plot(view=True)
def analyse(self):
self.task_dag.set_table_info(self.fabric_hdfs_utils.hdfs_exits)
to_left_link, self._task_run_serial_edg, self._task_run_serial = self.task_dag.bfs()
to_left_tables = [_["target"] for _ in to_left_link]
logger.info("to_left_tables:\n" + json.dumps(to_left_tables, ensure_ascii=False, indent=4))
logger.info("_task_run_serial:\n" + json.dumps(self._task_run_serial, ensure_ascii=False, indent=4))
def run_all(self):
self.analyse()
for task_dict in self._task_run_serial:
cls_name = task_dict.get("cls_name")
if task_dict.get("need_to_run"):
task = self.cls_map[cls_name]
logger.info("task class %s starts" % cls_name)
getattr(task(), "run_task")()
logger.info("task class %s done" % cls_name)
def run_single(self, cls_name):
task = self.cls_map[cls_name]
getattr(task(), "run_task")()
def load_not_exit(self):
pass
@staticmethod
def reload_all_daily_hdfs():
fabric_hdfs_utils = FabricHdfsUtils()
if fabric_hdfs_utils.hdfs_exits(HDFS_RISK_MODEL_AUTO_RAW):
fabric_hdfs_utils.hdfs_rmr(HDFS_RISK_MODEL_AUTO_RAW)
fabric_hdfs_utils.hdfs_mkdir(HDFS_RISK_MODEL_AUTO_RAW)
LoadRawData().put_all_daily()
@staticmethod
def export_raw_data():
FabricDbUtils().export_all_raw_data_by_sh()
def collect(self):
"""
搜集
"""
pass
def save_all(self):
"""
保存所有数据
:return:
"""
pass
/home/sc/PycharmProjects/sc/model-feature-engine/conf/all_task_conf.py
/home/sc/PycharmProjects/sc/model-feature-engine/biz/feature/network/feature_extract_network_all_link_judgedoc_cnt.py
h( t )=h _0( t )exp(%beta _1 x_1+%beta _2 x_2+...+%beta _p x_p )
from fabric_utils.fabric_utils import Deploy
import argparse
from conf.conf import WORK_DIR
import os
def build_run_task_fs(model="all", cls_name="", task_name="run.py"):
task_fs_str = """
from controller.main_controller import Controller
from functools import partial
def run_model(model="all", cls_name=None):
if model == "all":
run = Controller().run_all
elif model == "single" and cls_name and isinstance(cls_name, str):
run = partial(Controller().run_single, cls_name=cls_name)
else:
raise Exception()
return run
run_model(model="%s", cls_name="%s")()
""" % (model, cls_name)
with open(os.path.join(WORK_DIR, task_name), "w") as fp:
fp.write(task_fs_str)
if __name__ == '__main__':
task_name = "run.py"
parser = argparse.ArgumentParser(add_help=False)
parser.add_argument('-a', help='action. set_env, deploy_submit. (指定运行模式)', default='deploy_submit', type=str, choices=["set_env", "deploy_submit"])
parser.add_argument('-m', help='model. all, single. (提交运行的方式, all运行所有, single, 运行单一 class,运行单一class时需要指定cls)', default='all', choices=["all", "single"])
parser.add_argument('-cls', help='class name to run in single model。 单一模式下需要指定的cls', default="")
parser.add_argument('--help', action='help')
args = parser.parse_args()
build_run_task_fs(args.m, args.cls, task_name)
if args.a == "deploy_submit":
Deploy().deploy()
Deploy().run_submit_task(task_name)
elif args.a == "set_env":
Deploy().deploy()
Deploy().setup_py_env()
else:
raise Exception("please run python deploy.py --help to get help")