# 解压数据集
!cd /home/aistudio/data/data23668 && unzip -qo Dataset.zip
!cd /home/aistudio/data/data23668/Dataset && rm -f */.DS_Store # 删除无关文件
import os
import time
import random
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
import paddle
import paddle.fluid as fluid
import paddle.fluid.layers as layers
from multiprocessing import cpu_count
from paddle.fluid.dygraph import Pool2D,Conv2D
from paddle.fluid.dygraph import Linear
train_data.list 和 test_data.list
# 生成图像列表
data_path = '/home/aistudio/data/data23668/Dataset'#这里是你的数据集路径
character_folders = os.listdir(data_path)
# print(character_folders)
if(os.path.exists('./train_data.list')):
os.remove('./train_data.list')
if(os.path.exists('./test_data.list')):
os.remove('./test_data.list')
for character_folder in character_folders:
with open('./train_data.list', 'a') as f_train:
with open('./test_data.list', 'a') as f_test:
if character_folder == '.DS_Store':
continue
character_imgs = os.listdir(os.path.join(data_path,character_folder))
count = 0
for img in character_imgs:
if img =='.DS_Store':
continue
if count%10 == 0:
f_test.write(os.path.join(data_path,character_folder,img) + '\t' + character_folder + '\n')
else:
f_train.write(os.path.join(data_path,character_folder,img) + '\t' + character_folder + '\n')
count +=1
print('列表已生成')
train_reader 和 test_reader
# 定义训练集和测试集的reader
def data_mapper(sample):
img, label = sample
img = Image.open(img)
img = img.resize((100, 100), Image.ANTIALIAS)
img = np.array(img).astype('float32')
img = img.transpose((2, 0, 1))
img = img/255.0
return img, label
def data_reader(data_list_path):
def reader():
with open(data_list_path, 'r') as f:
lines = f.readlines()
for line in lines:
img, label = line.split('\t')
yield img, int(label)
return paddle.reader.xmap_readers(data_mapper, reader, cpu_count(), 512)
# 用于训练的数据提供器
#buf_size是打乱数据集的参数,size越大,图片顺序越乱
train_reader = paddle.batch(reader=paddle.reader.shuffle(reader=data_reader('./train_data.list'), buf_size=1024), batch_size=32)
# 用于测试的数据提供器
test_reader = paddle.batch(reader=data_reader('./test_data.list'), batch_size=32)
大家可以踊跃尝试各种分类网络,如AlexNet、VGGNet、ResNet等
全连接的最后一个通道改为 类别数 即可
下面是课程给的源码,精度低的不忍直视,请直接无视~
#定义DNN网络
class MyDNN(fluid.dygraph.Layer):
def __init__(self):
super(MyDNN,self).__init__()
self.hidden1 = Linear(100,100,act='relu') #100,参数是可以更改的,属于超参调整
self.hidden2 = Linear(100,100,act='relu')
self.hidden3 = Linear(100,100,act='relu')
self.hidden4 = Linear(3*100*100,10,act='softmax')
def forward(self,input):
x= self.hidden1(input)
x = self.hidden2(x)
x = self.hidden3(x)
x = fluid.layers.reshape(x,shape=[-1,3*100*100])
y = self.hidden4(x)
return y
关于动态图,想学习的朋友可参考官方API:https://www.paddlepaddle.org.cn/documentation/docs/zh/beginners_guide/basic_concept/dygraph/DyGraph.html#dygraph
#用动态图进行训练
with fluid.dygraph.guard():
model=MyDNN() #模型实例化
model.train() #训练模式
opt = fluid.optimizer.Momentum(learning_rate=0.001,momentum=0.9,parameter_list=model.parameters())
epochs_num=50 #迭代次数
for pass_num in range(epochs_num):
for batch_id,data in enumerate(train_reader()):
images=np.array([x[0].reshape(3,100,100) for x in data],np.float32)
labels = np.array([x[1] for x in data]).astype('int64')
labels = labels[:, np.newaxis]
image=fluid.dygraph.to_variable(images)
label=fluid.dygraph.to_variable(labels)
predict=model(image)#预测
loss=fluid.layers.softmax_with_cross_entropy(predict,label)
avg_loss=fluid.layers.mean(loss)#获取loss值
acc=fluid.layers.accuracy(predict,label)#计算精度
if batch_id!=0 and batch_id%50==0:
print("train_pass:{},batch_id:{},train_loss:{},train_acc:{}".format(pass_num,batch_id,avg_loss.numpy(),acc.numpy()))
avg_loss.backward()
opt.minimize(avg_loss)
model.clear_gradients()
fluid.save_dygraph(model.state_dict(),'MyDNN')#保存模型
#模型校验
with fluid.dygraph.guard():
accs = []
model_dict, _ = fluid.load_dygraph('MyDNN')
model = MyDNN()
model.load_dict(model_dict) #加载模型参数
model.eval() #训练模式
for batch_id,data in enumerate(test_reader()):#测试集
images=np.array([x[0].reshape(3,100,100) for x in data],np.float32)
labels = np.array([x[1] for x in data]).astype('int64')
labels = labels[:, np.newaxis]
image=fluid.dygraph.to_variable(images)
label=fluid.dygraph.to_variable(labels)
predict=model(image)
acc=fluid.layers.accuracy(predict,label)
accs.append(acc.numpy()[0])
avg_acc = np.mean(accs)
print(avg_acc)
打开任意一张 手势图片 进行预测
#读取预测图像,进行预测
def load_image(path):
img = Image.open(path)
img = img.resize((100, 100), Image.ANTIALIAS)
img = np.array(img).astype('float32')
img = img.transpose((2, 0, 1))
img = img/255.0
print(img.shape)
return img
#构建预测动态图过程
with fluid.dygraph.guard():
infer_path = '手势.JPG'
model=MyDNN()#模型实例化
model_dict,_=fluid.load_dygraph('MyDNN')
model.load_dict(model_dict)#加载模型参数
model.eval()#评估模式
infer_img = load_image(infer_path)
infer_img=np.array(infer_img).astype('float32')
infer_img=infer_img[np.newaxis,:, : ,:]
infer_img = fluid.dygraph.to_variable(infer_img)
result=model(infer_img)
display(Image.open('手势.JPG'))
print(np.argmax(result.numpy()))