categorical_crossentropy 和 sparse_categorical_crossentropy的区别

tf.keras 中,有两个交叉熵相关的损失函数 tf.keras.losses.categorical_crossentropytf.keras.losses.sparse_categorical_crossentropy 。其中 sparse 的含义是,真实的标签值 y_true 可以直接传入 int 类型的标签类别,sparse时 y 不需要one-hotcategorical 需要。具体而言:

loss = tf.keras.losses.sparse_categorical_crossentropy(y_true=y, y_pred=y_pred)

loss = tf.keras.losses.categorical_crossentropy(
    y_true=tf.one_hot(y, depth=tf.shape(y_pred)[-1]),
    y_pred=y_pred
)

你可能感兴趣的:(tf2.0,tf2.0之动手学深度学习,深度学习)