Java代码在编译后会变成Java字节码,字节码被类加载器加载到JVM里,JVM执行字节码,最终需要转化为汇编指令在CPU上执行,Java中所使用的并发机制依赖于JVM的实现和CPU指令。
在多线程并发编程中 synchronized 和 volatile 都扮演着重要的角色,volatile 是轻量级的 synchronized,它在多处理器开发中保证了共享变量的“可见性”。可见性的意思是当一个线程修改一个共享变量时,另外一个线程能读到这个修改的值。如果volatile变量修饰符使用恰当的话,它比 synchronized 的使用和执行成本更低,因为它不会引起线程上下文的切换和调度。那么在硬件层明上Intel处理器是如何实现 volatile 的呢?
Java语言规范第三版中对volatile的定义如下:Java编程语言允许线程访问共享变量,为了确保共享变量能被准确和一致的更新,线程应该确保通过排他锁单独获得这个变量。Java语言提供了volatile,在某些情况下比锁要更加方便。如果一个字段被声明成volatile,Java线程内存模型确保所有线程看到的这个变量的值是一致的。
在了解volatile实现原理前,需要先看看与其实现原理相关的CPU术语和说明。
那么volatile是如何保证可见性的呢?在X86处理器下通过工具获取JIT编译器生成的汇编指令,可以查看对volatile进行写操作时,CPU做了什么事情。
Java代码如下:
instance = new Signleton(); //instance是volatile的变量
转变成汇编代码后如下:
0x01a3de1d: movb $0 X 0,0 X 1104800(%esi);0x01a3de24: lock addl $0 X 0,(%esp);
有volatile变量修饰的共享变量进行写操作的时候会多出第二行汇编代码,通过查看IA-32架构软件开发者手册可知,Lock前缀的指令在多核处理器下会引发两件事情。
1)将当前处理器缓存行的数据写回到系统内存。
2)这个写回内存的操作会使在其他CPU里缓存了该内存地址的数据无效。
为了提高处理速度,处理器不直接和内存进行通信,而是先将系统内存的数据读到内部缓存(L1,L2或其他)后再进行操作,但操作完后不知道何时会写到内存。如果对声明了volatile的变量进行写操作,JVM就会想处理器发送一条Lock前缀的指令,将这个变量所在缓存行的数据写回到系统内存。但是就算写回到内存,如果其他处理器缓存的值还是旧的,再执行计算操作就会有问题。所以,在多处理器下,为了保证各个处理器的缓存是一致的,就会实现缓存一致性协议,每个处理器通过嗅探在总线上传播的数据来检查自己缓存的值是不是过期了,当处理器发现自己缓存行对应的内存地址被修改,就会将当前处理器的缓存行设置成无效状态,当处理器对这个数据进行修改操作的时候,会重新从系统内存中把数据读到处理器缓存里。
下面具体讲解volatile的条件实现原则。
1)Lock前缀指令会引起处理器缓存回写到内存。Lock前缀指令导致在执行指令期间,声言处理器的Lock#信号,在处理器环境中,Lock#信号确保在声言该信号期间,处理器可以独占任何共享内存。但是在最近的处理器里,Lock#信号一般不锁总线,而是锁缓存,毕竟锁总线开销的比较大。对于Intel486和Pentium处理器,在锁操作时,总是在总线上声言Lock#信号,但是在P6和目前的处理器中,如果访问的内存区域已经缓存在处理器内部,则不会声言Lock#信号。相反,它会锁定这块内存区域的缓存并回写到内存,并使用缓存一致性机制来确保修改的原子性,此操作被称为“缓存锁定”,缓存一致性机制会阻止同时修改由两个以上处理器缓存的内存区域数据。
2)一个处理器的缓存回写到内存会导致其他处理器的缓存无效。IA-32处理器和Intel64处理器使用MESI(修改、独占、共享、无效)控制协会去维护内部缓存和其他处理器缓存的一致性。在多核处理器系统中进行操作的时候,IA-32和Intel64处理器能嗅探到其他处理器访问系统内存和它们的内部缓存。处理器使用嗅探技术保证它的内部缓存、系统内存和其他处理器的缓存的数据在总线上保持一致。例如在Pentium和P6 family处理器中,如果通过嗅探一个处理器来检测其他处理器打算写内存地址,而这个地址当前处于共享状态,那么正在嗅探的处理器将使它的缓存行无效,在下次访问相同内存地址时,强制执行缓存行填充。
Java并发编程大师Doug lea在JDK7的并发包里新增一个队列集合类LinkedTransferQuene,它在使用volatile变量时,用一种追加字节的方式来优化队列出队和入队的性能。LinkedTransferQuene的代码如下:
/**队列中的头部结点*/
private transient final PaddedAtomicReference head;
/**队列中的尾部结点*/
private transient final PaddedAtomicReference tail;
static final class PaddedAtomicReference extends AtomicReference {
Object p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pa, pb, pc, pd, peObject;
PaddedAtomicReference(T r) {
super(r);
}
}
public class AtomicReference implements java.io.Serializable {
private volatile V value;
//...省略
}
追加字节能优化性能?
这种方式看起来很神奇,但如果深入理解处理器架构就能理解其中的奥秘了。通过对LinkTransferQuene这个类进行分析,可知类中使用了一个内部类类型来定义队列的头节点(head)和尾节点(tail),而这个内部类PaddedAtomicReference相对于父类AtomicReference只做了一件事情,就是将共享变量追加到64字节。我们计算一下,一个对象的引用占4个字节,它追加了15个变量(占据60个字节),再加上父类的value变量,一共64个字节。
为什么追加64字节能够提高并发编程的效率呢?
因为对于Intel Core i7、酷睿、Atom和NetBurst,以及Core Solo和Pentium M处理器的L1,L2或L3缓存的高速缓存行是64个字节宽,不支持部分填充缓存行,这意味着如果队列的头节点和尾节点都不足64字节的话,处理器会将它们都读到同一个高速缓存行中,在多处理器下每个处理器都会缓存同样的头、尾节点,当一个处理器试图修改头节点时,会将整个缓存行锁定,那么在缓存一致性机制的作用下,会导致其他处理器不能访问自己高速缓存中的尾节点,而队列的入队和出队操作则需要不停的修改头节点和尾节点,所以在多处理器的情况下将会严重影响到队列的入队和出队效率。Doug lea使用追加到64字节的方式来填满高速缓冲区的缓存行,避免头节点和尾节点加载到同一个缓存行,使头、尾节点在修改时不会互相锁定。
那么是不是在使用volatile变量是都应该追加到64字节呢?
自然不是,具体情况具体分析,以下两种情况,不应该使用这种方式了。
1)缓存行非64字节宽的处理器。如P6系列和奔腾处理器,它们的L1和L2告诉缓存行是32字节宽。
2)共享变量不会被频繁的写。因为使用追加字节的方式需要处理器读写更多地字节到高速缓冲区,这本身就会带来一定的性能损耗,如果共享变量不被频繁写的话,锁的几率也非常小,就没有必要通过追加字节宽的方式来避免相互锁定。
不过这种追加字节的方式在Java 7下可能不生效,因为Java 7 变得更加智慧,它会淘汰或重新排列无用字段,需要使用其他追加字节的方式。