- ONNX模型使用指南:从零开始掌握跨领域模型部署
ONNX模型使用指南:从零开始掌握跨领域模型部署ONNX模型作为一种开放式的神经网络交换格式,已成为AI模型部署的行业标准。当您获得一个没有使用说明的ONNX模型时,可以通过系统化的分析和部署流程,使其在不同领域发挥作用。本文将详细阐述如何分析模型结构、配置运行环境、准备特定领域输入数据、执行推理并处理结果,同时提供图像分类、自然语言处理、医疗影像分析、金融风控和自动驾驶等领域的具体应用示例,帮助
- Ecounter South Lake
Whatever璇
ThefirsttimetomeetSouthLakewasinautumn.Inourleisuretimeafterdinner,twoorthreefriendsinvitedeachotherandwewalkedaroundSouthLake.Thewindwaswhistlingthatday,andthewaveswerebeatingagainsttheshore,oneafter
- 4-Spring源码解析之this()(1)——AnnotatedBeanDefinitionReader
想当厨子的程序媛
Spring注解源码解析spring
1.程序入口AnnotationConfigApplicationContextapplicationContext=newAnnotationConfigApplicationContext(MainConfig.class);2.AnnotationConfigApplicationContext类有参构造器其中MainConfig类是自己写的配置类,我们从这一行代码来开始分析。Spring容
- 【父亲节英文绘本】He's all right, my dad. 这是我爸爸,他真的很棒!
励步英语呼市分校
He'sallright,mydad.这是我爸爸,他真的很棒!Mydadisn'tafraidofanything,eventheBigBadWolf.我爸爸什么都不怕,连坏蛋大野狼都不怕。Hecanjumprightoverthemoon,他可以从月亮上跳过去,Andwalkonatightrope(withoutfallingoff).还会走高空绳索(不会掉下去)。Hecanwrestlewi
- Android 异构计算与 OpenCL/CUDA/OpenVX 的协同方式实战解析
观熵
国产NPU×Android推理优化android人工智能
Android异构计算与OpenCL/CUDA/OpenVX的协同方式实战解析关键词Android异构计算、OpenCL、CUDA、OpenVX、GPU加速、NPU调度、HSA架构、神经网络推理、计算图编排、SoC协同处理、AI芯片编程摘要随着国产SoC平台持续迭代,Android系统中异构计算模式已从传统CPU+GPU并行计算,扩展到集成NPU、DSP、ISP等多核单元的复杂协同体系。在AI推理
- Spring AI 函数调用(Function Call)系统设计方案
大树~~
AI应用开发spring人工智能数据库SpringAIFunctionCall
一、系统概述与设计目标1.1核心目标从零构建一个灵活、安全、高效的函数调用系统,使大语言模型能够在对话中调用应用程序中的方法,同时保持良好的开发体验和企业级特性。1.2主要功能需求支持通过注解将普通Java方法标记为可被AI调用的函数自动生成符合LLM要求的函数描述和参数定义安全地解析和执行模型的函数调用请求处理并返回执行结果给模型提供扩展点以支持不同LLM提供商的特定实现1.3设计原则开发便捷性
- 超详细 Conda 指令详解---附有相应的示例
以下是所有conda指令的详细列表,并附有相应的示例超详细Conda指令详解环境管理命令condacreate:创建新环境condacreate--name[package_spec1package_spec2...]示例:condacreate--namemyenvnumpypandascondainstall:安装包到当前环境condainstall[--name][--file][--cha
- 极限挑战:用知识蒸馏压缩模型,实时推荐系统在50ms内完成推荐
极限挑战:用知识蒸馏压缩模型,实时推荐系统在50ms内完成推荐标题极限挑战:用知识蒸馏压缩模型,实时推荐系统在50ms内完成推荐TagAI,知识蒸馏,实时推荐,模型压缩,技术挑战,高性能描述面对实时推荐系统必须在50ms内完成推荐这一极限条件,AI研发工程师团队在数据量从GB级飙升至PB级的巨大冲击下,展现出极高的技术实力和创新能力。团队通过引入先进的模型压缩和优化技术,成功在性能和精度之间找到了
- KL散度:信息差异的量化标尺 | 从概率分布对齐到模型优化的核心度量
不对称性、计算本质与机器学习的普适应用本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!一、核心定义与数学本质KL散度(Kullback-LeiblerDivergence)用于衡量两个概率分布PPP和QQQ的差异程度,定义为:DKL(P∥Q)=∑x∈XP(x)logP(x)Q(x)(离散形式)D_
- Transformer:自注意力驱动的神经网络革命引擎
大千AI助手
人工智能Python#OTHERtransformer神经网络深度学习google人工智能机器学习大模型
本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!从语言理解到多模态智能的通用架构基石⚙️一、核心定义与历史意义Transformer是由Google团队在2017年论文《AttentionIsAllYouNeed》中提出的深度学习架构,其颠覆性创新在于:完全摒弃RNN/CNN:仅依赖自注意力机制(S
- [特殊字符] LLM(大型语言模型):智能时代的语言引擎与通用推理基座
大千AI助手
人工智能Python#OTHER语言模型人工智能自然语言处理LLM大模型Transformer
本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!从千亿参数到人类认知的AI革命一、核心定义与核心特征LLM(LargeLanguageModel)是基于海量文本数据训练的深度学习模型,通过神经网络架构(尤其是Transformer)模拟人类语言的复杂规律,实现文本理解、生成与推理任务。其核心特征可概
- MAP最大后验估计:贝叶斯决策的优化引擎
大千AI助手
人工智能Python#OTHERpython人工智能算法贝叶斯MAP概率论条件概率
融合先验知识与观测数据的概率推断方法本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!一、核心概念与数学本质MAP(MaximumAPosteriori)估计是贝叶斯框架下的参数估计方法,其目标为:最大化后验概率(P(\theta\midX)),即:[\hat{\theta}{MAP}=\arg\ma
- MLE最大似然估计:数据驱动的概率模型参数推断基石
大千AI助手
人工智能Python#OTHER数据挖掘人工智能机器学习算法MLE参数估计概率论
从样本中还原未知分布的本质规律本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!一、核心思想与数学定义最大似然估计(MaximumLikelihoodEstimation,MLE)是频率学派的参数估计方法,其核心思想为:选择使观测数据出现概率最大的参数值。给定独立同分布样本X={x1,x2,…,xn}
- 【Docker】容器被停止/删除的方式及命令:全面解析与实践指南
阿猿收手吧!
#Dockerdockerdubboeureka运维面试容器
文章目录引言一、容器的生命周期二、停止容器的命令及方式1.`dockerstop`命令2.`dockerkill`命令3.`dockerpause`和`dockerunpause`命令4.`dockerrestart`命令三、删除容器的命令及方式1.`dockerrm`命令2.`dockercontainerprune`命令3.`dockerrm`与`dockerrmi`的区别四、容器停止与删除的
- 服务器清理空间--主要是conda环境清理和删除
1.查看空间情况(base)zhouy24@RL-DSlab:~/zhouy24Files$df-hFilesystemSizeUsedAvailUse%Mountedonudev252G0252G0%/devtmpfs51G4.9M51G1%/run/dev/nvme0n1p31.9T1.7T42G98%/tmpfs252G800M252G1%/dev/shmtmpfs5.0M4.0K5.0M1
- 知识蒸馏:模型压缩与知识迁移的核心引擎
大千AI助手
人工智能Python#OTHERtransformer人工智能神经网络深度学习知识蒸馏KD蒸馏
本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!从软目标迁移到无数据合成的轻量化革命一、核心定义与技术价值知识蒸馏(KnowledgeDistillation,KD)是一种通过迁移大型教师模型(Teacher)的知识至小型学生模型(Student)的模型压缩技术。其核心思想是:学生模型不仅学习原始数
- 预测导管原位癌浸润性复发的深度学习:利用组织病理学图像和临床特征
浪漫的诗人
论文深度学习人工智能
文章目录研究内容目的方法数据集模型开发模型训练与评估外部验证统计分析研究结果模型性能风险分层外部验证特征重要性原文链接原文献:Deeplearningforpredictinginvasiverecurrenceofductalcarcinomainsitu:leveraginghistopathologyimagesandclinicalfeatures研究背景【DCIS与IBC的关联】乳腺导管
- 宝贝今日在园活动❤️❤️❤️
Stop_e50f
一、入园活动:跳呼啦圈二、集体活动:升国旗英语活动:内容:鼻子:nose嘴巴:mouth头发:hair三、字宝宝活动:小鸭子吃饭啦❤️❤️❤️集体活动:讲故事离园活动:温馨提示❤️❤️❤️今日任务:巩固复习字宝宝:小鸭子由于天气炎热宝贝们户外活动,午休时出汗量很大,可在书包里准备几件短袖,多条汗巾。检查自家宝贝指甲是否有长长,务必及时修剪并修平要参加旅游的小朋友可提前在家给小朋友做好思想工作书包内
- Java大厂面试实录:从Spring Boot到AI微服务架构的深度技术拷问
第一轮提问面试官:小曾,今天我们主要考察Java后端开发能力,从基础开始。场景:假设你要设计一个电商平台的订单系统,订单量峰值达到每秒1000笔。你会选择哪些技术栈?为什么?场景:订单系统需要高可用,数据库选择MySQL,你会如何优化数据库连接池?场景:订单支付后需要通知库存系统减库存,你会选择哪种消息队列?如何保证消息可靠性?小曾:(搓手)嗯…订单系统,我会用SpringBoot,数据库用MyS
- Java全栈面试实录:从Spring Boot到AI大模型,互联网大厂求职者的技术洗礼
**第一轮提问面试官:小曾,先谈谈你在SpringBoot项目中的缓存实践。小曾:我常用Redis,通过@Cacheable注解实现方法缓存,配置了Redis集群模式。面试官:很好!在电商秒杀场景,如果缓存击穿怎么办?小曾:可以用布隆过滤器或互斥锁解决,但具体实现得看业务...面试官:你提到SpringCloud,能说说服务注册选Consul还是Eureka?小曾:Eureka简单,Consul更
- Java大厂面试实录:从电商场景到AIGC的深度技术拷问
remCoding
Java场景面试宝典Java面试SpringBootKafkaAI大厂面试微服务
第一轮提问:电商场景与微服务基础面试官:小曾,请描述一个典型的电商秒杀场景,你会如何设计系统架构?涉及哪些关键技术?小曾:秒杀嘛,主要是高并发,我一般会用SpringBoot搭后端,数据库用Redis做缓存,消息队列用Kafka异步处理订单。具体技术细节……呃,好像没细想。面试官(微笑):“不错,Redis和Kafka选得对。那如果用户请求量超10万/QPS,你会如何扩容?SpringCloud的
- Java大厂面试实录:从Spring Boot到AI微服务架构的深度拷问
remCoding
Java场景面试宝典Java面试SpringBootJakartaEEAI微服务KafkaSpringCloudAI面试
第一轮提问:电商场景下的高并发架构面试官:小曾,我们公司电商业务面临“双十一”秒杀场景,需要支持百万级并发,你会如何设计系统架构?请结合SpringCloud和消息队列谈谈方案。小曾:(搓手)额……我会用SpringCloudAlibaba,搞个Nacos做服务注册,网关用Zuul,然后订单服务用SpringBoot+Redis缓存,秒杀请求走消息队列,比如Kafka吧,异步处理,降低峰值压力……
- Java大厂面试实录:从Spring Boot到AI微服务架构的层层递进
remCoding
Java场景面试宝典JavaSpringBootSpringCloudAIKafkaRedisMicroservices
场景:互联网大厂Java后端面试面试官(严肃):请简单介绍下你参与过的项目,主要使用哪些技术栈?小曾(自信):我参与过电商平台的订单系统,用了SpringBoot+SpringCloudAlibaba,数据库是MySQL+Redis缓存,消息队列用Kafka处理异步任务。面试官(点头):不错,能具体说说订单系统如何应对高并发场景的吗?小曾:我们用了HikariCP优化数据库连接池,Redis集群做
- Java大厂面试实录:从Spring Boot到AI微服务架构的全栈技术深度解析
remCoding
Java场景面试宝典JavaSpringBootSpringCloudAIKafkaRedisSpringSecurity
场景:互联网大厂Java后端开发面试面试官(严肃):请先自我介绍,并谈谈你熟悉的技术栈。小曾(略紧张):我是小曾,毕业于XX大学,擅长Java后端开发,熟悉SpringBoot、SpringCloud、MySQL、Redis等技术。面试官:很好,我们来看第一个场景。假设你要设计一个高并发的电商秒杀系统,你会如何选择技术栈?小曾:秒杀系统对性能要求高,我会用SpringBoot快速搭建,数据库用My
- Java大厂面试实录:从Spring Boot到AI微服务架构的深度技术挑战
remCoding
Java场景面试宝典JavaSpringBootSpringCloudAIKafkaRedisDocker
场景:互联网大厂Java后端开发面试面试官(严肃):小曾,请简单介绍下你过往的项目经验,特别是你在微服务架构中解决过哪些技术难题?小曾(自信):我之前参与过电商平台的订单系统重构,将单体应用拆分为SpringCloud微服务架构。我们使用了SpringCloudGateway做网关路由,服务间通过Kafka异步通信,并引入Redis缓存热点数据。面试官:很好,能具体说说你们如何解决订单超卖问题的吗
- Java大厂面试实录:从Spring Boot到AI微服务架构的深度技术拷问
remCoding
Java场景面试宝典Java面试SpringBootJakartaEEAI微服务KafkaRedisSpringAI
场景:互联网大厂Java后端面试面试官(严肃):小曾,请先简单介绍下你过往的项目经验,侧重于高并发场景下的架构设计。小曾(自信):我之前做过一个电商秒杀系统,用了SpringBoot和Redis,高峰期支撑了百万QPS。主要靠Redis缓存热点数据,数据库用了分库分表。面试官(点头):不错,能具体说说缓存雪崩和热点key的解决方案吗?小曾(挠头):呃...缓存雪崩用了熔断器,热点key的话...好
- 深度学习:让 AI 拥有 “思考” 能力的核心技术
田园Coder
人工智能科普人工智能科普
1.深度学习:突破传统的AI“进阶版”1.1什么是深度学习?深度学习是机器学习的一个分支,它通过模拟人脑神经网络的多层结构,让AI能够自动学习数据中的复杂特征,从而完成更高级的认知任务。例如,传统机器学习需要人类手动提取“猫有尖耳朵、胡须”等特征,而深度学习能直接从原始图片中,自主学习从像素到轮廓、再到整体形态的多层特征,最终实现更精准的识别。这种“自主提取特征”的能力,让深度学习突破了传统AI的
- AI产品经理面试宝典第18天:AI思维矩阵构建与实战应用面试题与答法
TGITCIC
AI产品经理一线大厂面试题产品经理面试AI产品经理面试大模型产品经理面试AI面试大模型面试
如何构建AI思维矩阵?产品经理的"降维攻击"密码面试官:请解释什么是AI思维矩阵?作为产品经理如何构建这种思维?你的回答:AI思维矩阵不是技术架构,而是产品经理在AI时代的核心认知框架。它包含四个关键维度:软硬结合创新:如智能音箱通过硬件采集语音数据,软件优化交互体验,形成闭环数据驱动决策:在智能客服场景中,通过用户对话数据优化意图识别模型,实现NLU准确率提升30%生态协同视角:以智能家居为例,
- 微信发送器项目指南:从结构到配置的全方位解析
余媛奕Lowell
微信发送器项目指南:从结构到配置的全方位解析项目目录结构及介绍本开源项目【微信发送器](https://github.com/bluedazzle/wechat_sender.git)采用清晰的目录布局,确保开发者能够迅速定位核心组件。以下是关键目录及其简介:src:核心源代码所在目录。main.py:主要运行入口,负责整个应用的启动和逻辑控制。wechat_sender:业务逻辑包,封装了与微信
- 初学者小白的复盘
cxw15041305759
c语言
scanf函数在vs里需要加入说明:#define_CRT_SECURE_NO_WARNINGS1在代码中标点符号都是英文的,注意main不要打成mian在写代码时,要留有空格,看着整齐美观点,不要直接就是胡乱写if语句中,后面不用加;要写两个==这就是一个简易的判断输入值为0或正数或负数的一个代码#define_CRT_SECURE_NO_WARNINGS1#includeintmain(){i
- js动画html标签(持续更新中)
843977358
htmljs动画mediaopacity
1.jQuery 效果 - animate() 方法 改变 "div" 元素的高度: $(".btn1").click(function(){ $("#box").animate({height:"300px
- springMVC学习笔记
caoyong
springMVC
1、搭建开发环境
a>、添加jar文件,在ioc所需jar包的基础上添加spring-web.jar,spring-webmvc.jar
b>、在web.xml中配置前端控制器
<servlet>
&nbs
- POI中设置Excel单元格格式
107x
poistyle列宽合并单元格自动换行
引用:http://apps.hi.baidu.com/share/detail/17249059
POI中可能会用到一些需要设置EXCEL单元格格式的操作小结:
先获取工作薄对象:
HSSFWorkbook wb = new HSSFWorkbook();
HSSFSheet sheet = wb.createSheet();
HSSFCellStyle setBorder = wb.
- jquery 获取A href 触发js方法的this参数 无效的情况
一炮送你回车库
jquery
html如下:
<td class=\"bord-r-n bord-l-n c-333\">
<a class=\"table-icon edit\" onclick=\"editTrValues(this);\">修改</a>
</td>"
j
- md5
3213213333332132
MD5
import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;
public class MDFive {
public static void main(String[] args) {
String md5Str = "cq
- 完全卸载干净Oracle11g
sophia天雪
orale数据库卸载干净清理注册表
完全卸载干净Oracle11g
A、存在OUI卸载工具的情况下:
第一步:停用所有Oracle相关的已启动的服务;
第二步:找到OUI卸载工具:在“开始”菜单中找到“oracle_OraDb11g_home”文件夹中
&
- apache 的access.log 日志文件太大如何解决
darkranger
apache
CustomLog logs/access.log common 此写法导致日志数据一致自增变大。
直接注释上面的语法
#CustomLog logs/access.log common
增加:
CustomLog "|bin/rotatelogs.exe -l logs/access-%Y-%m-d.log 
- Hadoop单机模式环境搭建关键步骤
aijuans
分布式
Hadoop环境需要sshd服务一直开启,故,在服务器上需要按照ssh服务,以Ubuntu Linux为例,按照ssh服务如下:
sudo apt-get install ssh
sudo apt-get install rsync
编辑HADOOP_HOME/conf/hadoop-env.sh文件,将JAVA_HOME设置为Java
- PL/SQL DEVELOPER 使用的一些技巧
atongyeye
javasql
1 记住密码
这是个有争议的功能,因为记住密码会给带来数据安全的问题。 但假如是开发用的库,密码甚至可以和用户名相同,每次输入密码实在没什么意义,可以考虑让PLSQL Developer记住密码。 位置:Tools菜单--Preferences--Oracle--Logon HIstory--Store with password
2 特殊Copy
在SQL Window
- PHP:在对象上动态添加一个新的方法
bardo
方法动态添加闭包
有关在一个对象上动态添加方法,如果你来自Ruby语言或您熟悉这门语言,你已经知道它是什么...... Ruby提供给你一种方式来获得一个instancied对象,并给这个对象添加一个额外的方法。
好!不说Ruby了,让我们来谈谈PHP
PHP未提供一个“标准的方式”做这样的事情,这也是没有核心的一部分...
但无论如何,它并没有说我们不能做这样
- ThreadLocal与线程安全
bijian1013
javajava多线程threadLocal
首先来看一下线程安全问题产生的两个前提条件:
1.数据共享,多个线程访问同样的数据。
2.共享数据是可变的,多个线程对访问的共享数据作出了修改。
实例:
定义一个共享数据:
public static int a = 0;
- Tomcat 架包冲突解决
征客丶
tomcatWeb
环境:
Tomcat 7.0.6
win7 x64
错误表象:【我的冲突的架包是:catalina.jar 与 tomcat-catalina-7.0.61.jar 冲突,不知道其他架包冲突时是不是也报这个错误】
严重: End event threw exception
java.lang.NoSuchMethodException: org.apache.catalina.dep
- 【Scala三】分析Spark源代码总结的Scala语法一
bit1129
scala
Scala语法 1. classOf运算符
Scala中的classOf[T]是一个class对象,等价于Java的T.class,比如classOf[TextInputFormat]等价于TextInputFormat.class
2. 方法默认值
defaultMinPartitions就是一个默认值,类似C++的方法默认值
- java 线程池管理机制
BlueSkator
java线程池管理机制
编辑
Add
Tools
jdk线程池
一、引言
第一:降低资源消耗。通过重复利用已创建的线程降低线程创建和销毁造成的消耗。第二:提高响应速度。当任务到达时,任务可以不需要等到线程创建就能立即执行。第三:提高线程的可管理性。线程是稀缺资源,如果无限制的创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一的分配,调优和监控。
- 关于hql中使用本地sql函数的问题(问-答)
BreakingBad
HQL存储函数
转自于:http://www.iteye.com/problems/23775
问:
我在开发过程中,使用hql进行查询(mysql5)使用到了mysql自带的函数find_in_set()这个函数作为匹配字符串的来讲效率非常好,但是我直接把它写在hql语句里面(from ForumMemberInfo fm,ForumArea fa where find_in_set(fm.userId,f
- 读《研磨设计模式》-代码笔记-迭代器模式-Iterator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.Arrays;
import java.util.List;
/**
* Iterator模式提供一种方法顺序访问一个聚合对象中各个元素,而又不暴露该对象内部表示
*
* 个人觉得,为了不暴露该
- 常用SQL
chenjunt3
oraclesqlC++cC#
--NC建库
CREATE TABLESPACE NNC_DATA01 DATAFILE 'E:\oracle\product\10.2.0\oradata\orcl\nnc_data01.dbf' SIZE 500M AUTOEXTEND ON NEXT 50M EXTENT MANAGEMENT LOCAL UNIFORM SIZE 256K ;
CREATE TABLESPA
- 数学是科学技术的语言
comsci
工作活动领域模型
从小学到大学都在学习数学,从小学开始了解数字的概念和背诵九九表到大学学习复变函数和离散数学,看起来好像掌握了这些数学知识,但是在工作中却很少真正用到这些知识,为什么?
最近在研究一种开源软件-CARROT2的源代码的时候,又一次感觉到数学在计算机技术中的不可动摇的基础作用,CARROT2是一种用于自动语言分类(聚类)的工具性软件,用JAVA语言编写,它
- Linux系统手动安装rzsz 软件包
daizj
linuxszrz
1、下载软件 rzsz-3.34.tar.gz。登录linux,用命令
wget http://freeware.sgi.com/source/rzsz/rzsz-3.48.tar.gz下载。
2、解压 tar zxvf rzsz-3.34.tar.gz
3、安装 cd rzsz-3.34 ; make posix 。注意:这个软件安装与常规的GNU软件不
- 读源码之:ArrayBlockingQueue
dieslrae
java
ArrayBlockingQueue是concurrent包提供的一个线程安全的队列,由一个数组来保存队列元素.通过
takeIndex和
putIndex来分别记录出队列和入队列的下标,以保证在出队列时
不进行元素移动.
//在出队列或者入队列的时候对takeIndex或者putIndex进行累加,如果已经到了数组末尾就又从0开始,保证数
- C语言学习九枚举的定义和应用
dcj3sjt126com
c
枚举的定义
# include <stdio.h>
enum WeekDay
{
MonDay, TuesDay, WednesDay, ThursDay, FriDay, SaturDay, SunDay
};
int main(void)
{
//int day; //day定义成int类型不合适
enum WeekDay day = Wedne
- Vagrant 三种网络配置详解
dcj3sjt126com
vagrant
Forwarded port
Private network
Public network
Vagrant 中一共有三种网络配置,下面我们将会详解三种网络配置各自优缺点。
端口映射(Forwarded port),顾名思义是指把宿主计算机的端口映射到虚拟机的某一个端口上,访问宿主计算机端口时,请求实际是被转发到虚拟机上指定端口的。Vagrantfile中设定语法为:
c
- 16.性能优化-完结
frank1234
性能优化
性能调优是一个宏大的工程,需要从宏观架构(比如拆分,冗余,读写分离,集群,缓存等), 软件设计(比如多线程并行化,选择合适的数据结构), 数据库设计层面(合理的表设计,汇总表,索引,分区,拆分,冗余等) 以及微观(软件的配置,SQL语句的编写,操作系统配置等)根据软件的应用场景做综合的考虑和权衡,并经验实际测试验证才能达到最优。
性能水很深, 笔者经验尚浅 ,赶脚也就了解了点皮毛而已,我觉得
- Word Search
hcx2013
search
Given a 2D board and a word, find if the word exists in the grid.
The word can be constructed from letters of sequentially adjacent cell, where "adjacent" cells are those horizontally or ve
- Spring4新特性——Web开发的增强
jinnianshilongnian
springspring mvcspring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装配置tengine并设置开机启动
liuxingguome
centos
yum install gcc-c++
yum install pcre pcre-devel
yum install zlib zlib-devel
yum install openssl openssl-devel
Ubuntu上可以这样安装
sudo aptitude install libdmalloc-dev libcurl4-opens
- 第14章 工具函数(上)
onestopweb
函数
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Xelsius 2008 and SAP BW at a glance
blueoxygen
BOXelsius
Xelsius提供了丰富多样的数据连接方式,其中为SAP BW专属提供的是BICS。那么Xelsius的各种连接的优缺点比较以及Xelsius是如何直接连接到BEx Query的呢? 以下Wiki文章应该提供了全面的概览。
http://wiki.sdn.sap.com/wiki/display/BOBJ/Xcelsius+2008+and+SAP+NetWeaver+BW+Co
- oracle表空间相关
tongsh6
oracle
在oracle数据库中,一个用户对应一个表空间,当表空间不足时,可以采用增加表空间的数据文件容量,也可以增加数据文件,方法有如下几种:
1.给表空间增加数据文件
ALTER TABLESPACE "表空间的名字" ADD DATAFILE
'表空间的数据文件路径' SIZE 50M;
&nb
- .Net framework4.0安装失败
yangjuanjava
.netwindows
上午的.net framework 4.0,各种失败,查了好多答案,各种不靠谱,最后终于找到答案了
和Windows Update有关系,给目录名重命名一下再次安装,即安装成功了!
下载地址:http://www.microsoft.com/en-us/download/details.aspx?id=17113
方法:
1.运行cmd,输入net stop WuAuServ
2.点击开