wpa_supplicant 是用于进行wifi连接认证和维护无线连接的一个应用,运行在安卓和各种嵌入式平台。wpa_supplicant在应用场景中所处的位置如图1所示:
图1
如图1所示,上层应用通过socket进程间通信向wpa_supplicant传送命令,从而实现wifi的连接。在产品运行过程中wpa_supplicant要一直保持运行,因为它还起到了维护链路的作用,比如说之前连接的wifi信号没了然后又有了,wpa_supplicant能及时的重新连接ap,并且通过进程间通信的接口能向上层应用汇报连接状态。
下面是wpa_supplicant的启动实例:
./wpa_supplicant -D wext -i wlan0 -c /etc/conf.d/wpa_supplicant.conf -B
其中主要说明两个地方:
-i wlan0 :这个是设置wifi连接的网络设备名称
-c /etc/conf.d/wpa_supplicant.conf :这个是设置wpa_supplicant配置文件的路径,该配置文件里决定了wpa_supplicant的进程间通信地址和保存之后连接的wifi信息。
下面是wpa_supplicant.conf文件内容实例:
ctrl_interface=/tmp/wpa_supplicant
update_config=1
ctrl_interface=/tmp/wpa_supplicant :这个是设置wpa_supplicant应用的进程间通信地址。
其他的配置可以看wpa_supplicant.conf的官方文档,其中网上常说的network配置项先不写,因为之后通过进程间通信配置好之后,wpa_supplicant应用会将配置的wifi信息写入配置文件当中。
wpa_supplicant的进程间交互的方法有两种,一种是上层应用主动向wpa_supplicant发送请求然后接收响应,一种是wpa_supplicant随时向上层应用汇报各种状态。本文主要讲实现wifi连接,所以就只说主动请求的方法。
wpa_supplicant的源码中有一个应用wpa_cli,是一个指令工具,通过进程间通信将输入的指令发送到wpa_supplicant然后显示返回的信息。所以可以参考该应用的实现。
我们主要用src/common/wpa_ctrl.c文件中的几个部分代码:
1.进程间通信的开启:
struct wpa_ctrl * wpa_ctrl_open(const char *ctrl_path)
{
struct wpa_ctrl *ctrl;
static int counter = 0;
int ret;
size_t res;
int tries = 0;
ctrl = os_malloc(sizeof(*ctrl));
if (ctrl == NULL)
return NULL;
os_memset(ctrl, 0, sizeof(*ctrl));
ctrl->s = socket(PF_UNIX, SOCK_DGRAM, 0);
if (ctrl->s < 0) {
os_free(ctrl);
return NULL;
}
ctrl->local.sun_family = AF_UNIX;
counter++;
try_again:
ret = os_snprintf(ctrl->local.sun_path, sizeof(ctrl->local.sun_path),
CONFIG_CTRL_IFACE_CLIENT_DIR "/"
CONFIG_CTRL_IFACE_CLIENT_PREFIX "%d-%d",
(int) getpid(), counter);
if (ret < 0 || (size_t) ret >= sizeof(ctrl->local.sun_path)) {
close(ctrl->s);
os_free(ctrl);
return NULL;
}
tries++;
if (bind(ctrl->s, (struct sockaddr *) &ctrl->local,
sizeof(ctrl->local)) < 0) {
if (errno == EADDRINUSE && tries < 2) {
/*
* getpid() returns unique identifier for this instance
* of wpa_ctrl, so the existing socket file must have
* been left by unclean termination of an earlier run.
* Remove the file and try again.
*/
unlink(ctrl->local.sun_path);
goto try_again;
}
close(ctrl->s);
os_free(ctrl);
return NULL;
}
#ifdef ANDROID
chmod(ctrl->local.sun_path, S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP);
chown(ctrl->local.sun_path, AID_SYSTEM, AID_WIFI);
/*
* If the ctrl_path isn't an absolute pathname, assume that
* it's the name of a socket in the Android reserved namespace.
* Otherwise, it's a normal UNIX domain socket appearing in the
* filesystem.
*/
if (ctrl_path != NULL && *ctrl_path != '/') {
char buf[21];
os_snprintf(buf, sizeof(buf), "wpa_%s", ctrl_path);
if (socket_local_client_connect(
ctrl->s, buf,
ANDROID_SOCKET_NAMESPACE_RESERVED,
SOCK_DGRAM) < 0) {
close(ctrl->s);
unlink(ctrl->local.sun_path);
os_free(ctrl);
return NULL;
}
return ctrl;
}
#endif /* ANDROID */
ctrl->dest.sun_family = AF_UNIX;
res = os_strlcpy(ctrl->dest.sun_path, ctrl_path,
sizeof(ctrl->dest.sun_path));
if (res >= sizeof(ctrl->dest.sun_path)) {
close(ctrl->s);
os_free(ctrl);
return NULL;
}
if (connect(ctrl->s, (struct sockaddr *) &ctrl->dest,
sizeof(ctrl->dest)) < 0) {
close(ctrl->s);
unlink(ctrl->local.sun_path);
os_free(ctrl);
return NULL;
}
return ctrl;
}
2.进程间通信的关闭:
void wpa_ctrl_close(struct wpa_ctrl *ctrl)
{
if (ctrl == NULL)
return;
unlink(ctrl->local.sun_path);
if (ctrl->s >= 0)
close(ctrl->s);
os_free(ctrl);
}
3.发送指令请求:
int wpa_ctrl_request(struct wpa_ctrl *ctrl, const char *cmd, size_t cmd_len,
char *reply, size_t *reply_len,
void (*msg_cb)(char *msg, size_t len))
{
struct timeval tv;
int res;
fd_set rfds;
const char *_cmd;
char *cmd_buf = NULL;
size_t _cmd_len;
#ifdef CONFIG_CTRL_IFACE_UDP
if (ctrl->cookie) {
char *pos;
_cmd_len = os_strlen(ctrl->cookie) + 1 + cmd_len;
cmd_buf = os_malloc(_cmd_len);
if (cmd_buf == NULL)
return -1;
_cmd = cmd_buf;
pos = cmd_buf;
os_strlcpy(pos, ctrl->cookie, _cmd_len);
pos += os_strlen(ctrl->cookie);
*pos++ = ' ';
os_memcpy(pos, cmd, cmd_len);
} else
#endif /* CONFIG_CTRL_IFACE_UDP */
{
_cmd = cmd;
_cmd_len = cmd_len;
}
if (send(ctrl->s, _cmd, _cmd_len, 0) < 0) {
os_free(cmd_buf);
return -1;
}
os_free(cmd_buf);
for (;;) {
tv.tv_sec = 10;
tv.tv_usec = 0;
FD_ZERO(&rfds);
FD_SET(ctrl->s, &rfds);
res = select(ctrl->s + 1, &rfds, NULL, NULL, &tv);
if (res < 0)
return res;
if (FD_ISSET(ctrl->s, &rfds)) {
res = recv(ctrl->s, reply, *reply_len, 0);
if (res < 0)
return res;
if (res > 0 && reply[0] == '<') {
/* This is an unsolicited message from
* wpa_supplicant, not the reply to the
* request. Use msg_cb to report this to the
* caller. */
if (msg_cb) {
/* Make sure the message is nul
* terminated. */
if ((size_t) res == *reply_len)
res = (*reply_len) - 1;
reply[res] = '\0';
msg_cb(reply, res);
}
continue;
}
*reply_len = res;
break;
} else {
return -2;
}
}
return 0;
}
源码中实现了多个平台多种连接方式的实现,本文主要讲述的是在linux环境下的wifi连接。三个接口具体调用顺序: 打开进程间通信 --> 发送请求 --> 关闭进程间通信(如果需要的话)。
wpaclient.h:
/*
#
# wifi连接接口
# 说明:通过进程间通信与wpa_supplicant进行交互实现wifi连接
# 注意:使用该接口的应用运行前要确保wpa_supplicant应用已经启动
# 并且能明确进程间通信地址。
#
*/
#ifndef __WPA_CLIENT_H__
#define __WPA_CLIENT_H__
#include
#include
namespace wifi {
const std::string WPA_PATH = "/tmp/wpa_supplicant/wlan0"; //进程间通信地址加上网络接口额名称
struct WPAContext {
int s;
struct sockaddr_un local;
struct sockaddr_un dest;
};
enum ConnectStatus {
STEP_SCAN = 0,
STEP_CONNECT_AP_OK,
STEP_DHCP_IP,
STEP_SUCCESS
};
class MXDHCP { //dhcp ip地址的工具类,实现方法不算特别合理。可以根据具体情况进行更改
public:
MXDHCP();
~MXDHCP();
bool Start(const std::string& net_interface);
bool GetDHCPStatus();
private:
bool CheckString(char *buf,int len);
FILE *pstream;
};
class WPAClient {
public:
WPAClient(const std::string& wpa_control_path = WPA_PATH);
~WPAClient();
bool GetInitStatus(){return wpa_context_!=nullptr;} //获取wpa进程间通信是否建立连接
int GetWiFiRssi(); //获取wifi信号强度,需要在连接成功之后调用
std::string GetCurrentSSID(); //获取当前连接的wifi的名称
bool ConnectWiFi(const std::string& ssid, const std::string& password); //连接加密wifi,传入wifi名称和密码
bool ConnectWiFiWithNoPassword(const std::string& ssid); //连接无加密的wifi,传入wifi名称即可
bool ConnectWiFiWithLast(); //直接连接上次已保存的wifi
bool GetConnectStatus(); //获取wifi连接状态
protected:
bool Init();
struct WPAContext* Open(const std::string& path);
void Close(struct WPAContext* context);
bool Request(struct WPAContext* context, const std::string& cmd,std::string& reply);
bool CheckCommandWithOk(const std::string cmd);
bool AddWiFi(int& id);
bool SetScanSSID(int id);
bool SetSSID(const std::string& ssid, int id);
bool SetPassword(const std::string& password, int id);
bool SetProtocol(int id, int en_crypt);
bool CleanAllWiFi();
bool EnableWiFi(int id);
void SetConnStatus(ConnectStatus status);
int GetConnStatus();
protected:
struct WPAContext* wpa_context_;
std::string wpa_control_path_;
MXDHCP dhcp_;
private:
int step_;
};
}
#endif // __WPA_CLIENT_H__
wpaclient.cc:
#include "wpaclient.h"
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
namespace wifi {
static std::string to_string(int val) {
char *buf = NULL;
int size;
int temp;
if (val < 0) {
temp = -val;
size = 2;
}else{
temp = val;
size = 1;
}
for (; temp > 0; temp = temp / 10, size++);
size++;
buf = (char *)malloc(size);
if (buf == NULL) {
return "";
}
memset(buf, 0, size);
sprintf(buf, "%d", val);
std::string re(buf);
free(buf);
return re;
}
MXDHCP::MXDHCP() {
pstream = NULL;
}
MXDHCP::~MXDHCP() {
if(pstream!=NULL){
pclose(pstream);
pstream = NULL;
}
}
bool MXDHCP::Start(const std::string & net_interface) {
if(pstream!=NULL){
pclose(pstream);
pstream = NULL;
}
std::string cmd = "udhcpc -b -i " + net_interface + " &";
system("killall -9 udhcpc &");
usleep(1000*100);
pstream = popen(cmd.data(),"r");
if(pstream == NULL){
return false;
}
return true;
}
/*
* dhcp 这个类的主要原理是通过读取udhcpc 的输出来判断是否拿到了ip地址,实际情况中可以使用别的方法
*/
bool MXDHCP::GetDHCPStatus() {
if(pstream == NULL){
return false;
}
int len = 1024;
char *buff = (char *)malloc(sizeof(char)*len);
if(buff==NULL){
return false;
}
int res = fread(buff,sizeof(char),len,pstream);
if(res<=0){
free(buff);
return false;
}
if(!CheckString(buff,res)){
free(buff);
return false;
}
pclose(pstream);
pstream = NULL;
free(buff);
return true;
}
bool MXDHCP::CheckString(char *buf ,int len)
{
if(strstr(buf,"adding dns")==NULL){
return false;
}
return true;
}
WPAClient::WPAClient(const std::string & wpa_control_path) {
wpa_context_ = nullptr;
wpa_control_path_ = wpa_control_path;
SetConnStatus(STEP_SCAN);
Init();
}
WPAClient::~WPAClient() {
Close(wpa_context_);
}
bool WPAClient::Init() {
wpa_context_ = Open(wpa_control_path_);
if (wpa_context_ == nullptr) {
return false;
}
SetConnStatus(STEP_SCAN);
return true;
}
std::string WPAClient::GetCurrentSSID()
{
std::string cmd = "STATUS";
std::string ssid_key = "\nssid=";
std::string recv;
std::string ssid = "";
if (!Request(wpa_context_, cmd, recv)) {
return "";
}
char temp[1024] = {0};
strcpy(temp, recv.data());
char *key = NULL;
key = strstr(temp, ssid_key.data());
if (key == NULL) {
return "";
}
key += ssid_key.length();
for (; (*key != '\0') && (*key != '\n') && (*key != '\r'); key++) {
ssid += *key;
}
return ssid;
}
int WPAClient::GetWiFiRssi() {
std::string cmd = "STATUS";
std::string rssi_key = "signal_level";
std::string recv;
if (!Request(wpa_context_, cmd, recv)) {
return 0;
}
char temp[1024] = {0};
strcpy(temp, recv.data());
char *key = NULL;
key = strstr(temp, rssi_key.data());
if (key == NULL) {
return 0;
}
for (; (*key != '\0') && (*key != '\n') && (*key != '\r'); key++) {
if ((*key >= '0') && (*key <= '9')) {
return atoi(key);
}
}
return 0;
}
bool WPAClient::ConnectWiFi(const std::string & ssid, const std::string & password) {
int net_id;
SetConnStatus(STEP_SCAN);
if (!CleanAllWiFi()) {
return false;
}
if (!AddWiFi(net_id)) {
return false;
}
if (!SetSSID(ssid, net_id)) {
return false;
}
if (!SetPassword(password, 0)) {
return false;
}
if (!SetProtocol(net_id, 1)) {
return false;
}
SetScanSSID(net_id);
if (!EnableWiFi(net_id)) {
return false;
}
return CheckCommandWithOk("SAVE_CONFIG");
}
bool WPAClient::ConnectWiFiWithNoPassword(const std::string & ssid) {
int net_id;
SetConnStatus(STEP_SCAN);
if (!CleanAllWiFi()) {
return false;
}
if (!AddWiFi(net_id)) {
return false;
}
if (!SetSSID(ssid, net_id)) {
return false;
}
if (!SetProtocol(net_id, 0)) {
return false;
}
SetScanSSID(net_id);
if (!EnableWiFi(net_id)) {
return false;
}
return CheckCommandWithOk("SAVE_CONFIG");
}
bool WPAClient::ConnectWiFiWithLast() {
SetConnStatus(STEP_SCAN);
if (!CheckCommandWithOk("ENABLE_NETWORK all")) {
return false;
}
return true;
}
bool WPAClient::GetConnectStatus() {
std::string cmd = "STATUS";
std::string recv;
int addr;
switch (step_) {
case STEP_SCAN:
if (!Request(wpa_context_, cmd, recv)) {
return false;
}
addr = recv.find("COMPLETED");
if (addr == -1) {
return false;
}
SetConnStatus(STEP_CONNECT_AP_OK);
case STEP_CONNECT_AP_OK:
if (!dhcp_.Start("wlan0")) {
return false;
}
SetConnStatus(STEP_DHCP_IP);
case STEP_DHCP_IP:
if (!dhcp_.GetDHCPStatus()) {
return false;
}
SetConnStatus(STEP_SUCCESS);
case STEP_SUCCESS:
return true;
default:
return false;
}
return false;
}
void WPAClient::SetConnStatus(ConnectStatus status) {
step_ = status;
}
int WPAClient::GetConnStatus() {
return step_;
}
WPAContext * WPAClient::Open(const std::string & path) {
struct WPAContext *ctrl;
ctrl = (struct WPAContext*)malloc(sizeof(struct WPAContext));
if (ctrl == nullptr) {
return nullptr;
}
memset(ctrl, 0, sizeof(struct WPAContext));
static int counter = 0;
int ret;
int tries = 0;
size_t res;
ctrl->s = socket(PF_UNIX, SOCK_DGRAM, 0);
if (ctrl->s < 0) {
free(ctrl);
return nullptr;
}
ctrl->local.sun_family = AF_UNIX;
counter++;
try_again:
ret = snprintf(ctrl->local.sun_path, sizeof(ctrl->local.sun_path),
"/tmp" "/"
"wpa_ctrl_" "%d-%d",
(int)getpid(), counter);
if (ret < 0 || (size_t)ret >= sizeof(ctrl->local.sun_path)) {
close(ctrl->s);
free(ctrl);
return nullptr;
}
tries++;
if (bind(ctrl->s, (struct sockaddr *) &ctrl->local,
sizeof(ctrl->local)) < 0) {
if (errno == EADDRINUSE && tries < 2) {
/*
* getpid() returns unique identifier for this instance
* of wpa_ctrl, so the existing socket file must have
* been left by unclean termination of an earlier run.
* Remove the file and try again.
*/
unlink(ctrl->local.sun_path);
goto try_again;
}
close(ctrl->s);
free(ctrl);
return nullptr;
}
ctrl->dest.sun_family = AF_UNIX;
res = strlcpy(ctrl->dest.sun_path, wpa_control_path_.data(),
sizeof(ctrl->dest.sun_path));
if (res >= sizeof(ctrl->dest.sun_path)) {
close(ctrl->s);
free(ctrl);
return nullptr;
}
if (connect(ctrl->s, (struct sockaddr *) &ctrl->dest,
sizeof(ctrl->dest)) < 0) {
close(ctrl->s);
unlink(ctrl->local.sun_path);
free(ctrl);
return nullptr;
}
return ctrl;
}
void WPAClient::Close(WPAContext * context) {
if (context == nullptr)
return;
unlink(context->local.sun_path);
if (context->s >= 0)
close(context->s);
free(context);
}
bool WPAClient::Request(WPAContext * context, const std::string & cmd, std::string& reply) {
int res;
fd_set rfds;
struct timeval tv;
const char *_cmd;
char *cmd_buf = NULL;
size_t _cmd_len;
_cmd = cmd.data();
_cmd_len = cmd.length();
if (wpa_context_ == nullptr) {
return false;
}
if (send(wpa_context_->s, _cmd, _cmd_len, 0) < 0) {
free(cmd_buf);
return -1;
}
free(cmd_buf);
for (;;) {
tv.tv_sec = 10;
tv.tv_usec = 0;
FD_ZERO(&rfds);
FD_SET(wpa_context_->s, &rfds);
res = select(wpa_context_->s + 1, &rfds, NULL, NULL, &tv);
if (res < 0)
return false;
if (FD_ISSET(wpa_context_->s, &rfds)) {
char temp[1024] = {0};
int temp_len = 1024;
res = recv(wpa_context_->s, temp, temp_len, 0);
if (res < 0)
return false;
if (res > 0 && temp[0] == '<') {
continue;
}
reply = temp;
break;
} else {
return false;
}
}
return true;
}
bool WPAClient::CheckCommandWithOk(const std::string cmd) {
std::string recv;
if (!Request(wpa_context_, cmd, recv)) {
return false;
}
if (strstr(recv.data(), "OK") == NULL) {
return false;
}
return true;
}
bool WPAClient::AddWiFi(int & id) {
std::string add_cmd = "ADD_NETWORK";
std::string recv;
if (!Request(wpa_context_, add_cmd, recv)) {
return false;
}
id = atoi(recv.data());
return true;
}
bool WPAClient::SetScanSSID(int id) {
std::string cmd = "SET_NETWORK " + to_string(id) + " scan_ssid 1";
return CheckCommandWithOk(cmd);
}
bool WPAClient::SetSSID(const std::string & ssid, int id) {
std::string cmd = "SET_NETWORK " + to_string(id) + " ssid " + "\"" + ssid + "\"";
return CheckCommandWithOk(cmd);
}
bool WPAClient::SetPassword(const std::string & password, int id) {
std::string cmd = "SET_NETWORK " + to_string(id) + " psk " + "\"" + password + "\"";
return CheckCommandWithOk(cmd);
}
bool WPAClient::SetProtocol(int id, int en_crypt) {
std::string cmd = "SET_NETWORK " + to_string(id);
if (en_crypt) {
cmd += " key_mgmt WPA-PSK";
return CheckCommandWithOk(cmd);
} else {
cmd += " key_mgmt NONE";
return CheckCommandWithOk(cmd);
}
}
bool WPAClient::CleanAllWiFi() {
CheckCommandWithOk("REMOVE_NETWORK all");
CheckCommandWithOk("DISABLE_NETWORK all");
return true;
}
bool WPAClient::EnableWiFi(int id) {
std::string cmd = "ENABLE_NETWORK " + to_string(id);
return CheckCommandWithOk(cmd);
}
}
demo.cc
#include
#include
#include
#include "wpaclient.h"
int main() {
std::string wifi_ssid = "test_ap";
std::string wifi_passwd = "12345678";
wifi::WPAClient wpa_client;
if(!wpa_client.GetInitStatus()) {
std::cout << "wpa client init failed!!!\n";
return -1;
}
wpa_client.ConnectWiFi(wifi_ssid,wifi_passwd);
int time_out = 15000; //ms
while(!wpa_client.GetConnectStatus()) {
if(time_out <= 0){
std::cout << "connect wifi: "<
由于项目原因,wpaclient.cc的实现有几个特点需要各位读者注意:
1.只会保存一个wifi,每次连接新的wifi会清除之前保存的wifi。
2.只实现了两种wifi的连接,wpa2和开放wifi。其他加密协议(比如WPA-EAP)还需要读者自己添加
3.可以实现中文wifi的连接,应为连接wifi的部分并不关心字符编码,只要传入的ssid数据与ap实际编码一致都可以连接。
4.此模块是要等到设备dhcp成功后GetConnectStatus()接口才会返回true,为了能准确得到dhcp的成功或者失败,这里通过检测udhcpc指令输出的log实现,如果读者设备上的udhcpc不会输出wpaclient检测的信息log需要另外考虑。
5.此模块dhcp成功后会kill掉udhcpc,这样不好应对局域网ip过期的问题。如果需要考虑这个的读者可以联系我,这个我这里已经解决,只是要根据具体情况来定。
关于本文所述内容有什么意见和建议欢迎与我联系。