FPGA学习

FPGA:高性能、低能耗、可编程

与其它计算载体如CPU与GPU相比,FPGA具有高性能、低能耗以及可硬件编程的特点。图1介绍了FPGA的硬件架构,每个FPGA主要由三个部分组成:输入输出逻辑,主要用于FPGA与外部其他部件,比如传感器的通信计算逻辑部件,主要用于建造计算模块;以及可编程连接网络,主要用于连接不同的计算逻辑部件去组成一个计算器。在编程时,我们可以把计算逻辑映射到硬件上,通过调整网络连接把不同的逻辑部件连通在一起去完成一个计算任务。比如要完成一个图像特征提取的任务,我们会连接FPGA的输入逻辑与照相机的输出逻辑,让图片可以进入FPGA。然后,连接FPGA的输入逻辑与多个计算逻辑部件,让这些计算逻辑部件并行提取每个图片区域的特征点。最后,我们可以连接计算逻辑部件与FPGA的输出逻辑,把特征点汇总后输出。由此可见,FPGA通常把算法的数据流以及执行指令写死在硬件逻辑中,从而避免了CPU的Instruction Fetch与Instruction Decode 工作。

图片描述

图1 FPGA硬件架构

高性能

虽然FPGA的频率一般比CPU低,但是可以用FPGA实现并行度很大的硬件计算器。比如一般CPU每次只能处理4到8个指令,在FPGA上使用数据并行的方法可以每次处理256个或者更多的指令,让FPGA可以处理比CPU多很多的数据量。另外,如上所述,在FPGA中一般不需要Instruction Fetch与Instruction Decode, 减少了这些流水线工序后也节省了不少计算时间。

为了让读者对FPGA加速有更好的了解,我们总结了微软研究院2010年对BLAS算法的FPGA加速研究。BLAS是矩阵运算的底层库,被广泛运用到高性能计算、机器学习等领域。在这个研究中,微软的研究人员分析了CPU、GPU以及FPGA对BLAS的加速以及能耗。图2对比了FPGA以及CPU、GPU执行GaxPy算法每次迭代的时间,相对于CPU,GPU与FPGA都达到了60%的加速。图中显示的是小矩阵运算,随着矩阵的增大,GPU与FPGA相对与CPU的加速比会越来越明显。

图片描述

图2 GaxPy 算法性能对比 (单位:微秒)

低能耗

FPGA相对于CPU与GPU有明显的能耗优势,主要有两个原因。首先,在FPGA中没有Instruction Fetch与Instruction Decode,在Intel的CPU里面,由于使用的是CISC架构,仅仅Decoder就占整个芯片能耗的50%;在GPU里面,Fetch与Decode也消耗了10%~20%的能源。其次,FPGA的主频比CPU与GPU低很多,通常CPU与GPU都在1GHz到3GHz之间,而FPGA的主频一般在500MHz以下。如此大的频率差使得FPGA消耗的能源远低于CPU与GPU。

图3对比了FPGA以及CPU、GPU执行GaxPy算法每次迭代的能源消耗。可以发现CPU与GPU的能耗是相仿的,而FPGA的能耗只是CPU与GPU的8%左右。由此可见,FPGA计算比CPU快60%,而能耗只是CPU的1/12,有相当大的优势,特别在能源受限的情况下,使用FPGA会使电池寿命延长不少。

图片描述

图3 GaxPy 算法能耗对比(单位:毫焦)

可硬件编程

由于FPGA是可硬件编程的,相对于ASIC而言,使用FPGA可以对硬件逻辑进行迭代更新。但是FPGA也会被诟病,因为把算法写到FPGA硬件并不是一个容易的过程,相比在CPU与GPU上编程技术门槛高许多,开发周期也会长很多。

图片描述

图4 传统FPGA开发流程与C-to-FPGA开发流程

图4显示了传统FPGA开发流程与C-to-FPGA开发流程的对比。在传统的FPGA开发流程中,我们需要把C/C++写成的算法逐行翻译成基于Verilog的硬件语言,然后再编译Verilog,把逻辑写入硬件。随着近几年FPGA技术的发展,从C直接编译到FPGA的技术已经逐渐成熟,并已在百度广泛被使用。在C-to-FPGA开发流程中,我们可以在C\C++的代码中加Pragma, 指出哪个计算Kernel应该被加速,然后C-to-FPGA引擎会自动把代码编译成硬件。在我们的经验中,使用传统开发流程,完成一个项目大约需要半年时间,而使用了C-to-FPGA开发流程后,一个项目大约两周便可完成,效率提升了10倍以上。



学习资料参考于:

http://geek.csdn.net/news/detail/73399


你可能感兴趣的:(HardWare)