使用sklearn包下的朴素贝叶斯算法,它包含三种模型——高斯模型、多项式模型和伯努利模型,详情可以参考朴素贝叶斯 — scikit-learn 0.18.1 documentation。
本文将使用贝叶斯多项式模型类来解决英文邮件分类的问题。
导入各种包
import nltk
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from tqdm import tqdm_notebook
from wordcloud import WordCloud
from sklearn.metrics import roc_curve, auc
from sklearn.naive_bayes import MultinomialNB
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
from nltk.tokenize import word_tokenize, RegexpTokenizer
%matplotlib inline
复制代码
数据集
数据来自Spam Mails Dataset kaggle,其中正常邮件标记为ham/0,垃圾邮件为spam/1
data = pd.read_csv('spam_ham_dataset.csv')
data = data.iloc[:, 1:]
data.head()
复制代码
label | text | label_num | |
---|---|---|---|
0 | ham | Subject: enron methanol ; meter # : 988291\r\n... | 0 |
1 | ham | Subject: hpl nom for january 9 , 2001\r\n( see... | 0 |
2 | ham | Subject: neon retreat\r\nho ho ho , we ' re ar... | 0 |
3 | spam | Subject: photoshop , windows , office . cheap ... | 1 |
4 | ham | Subject: re : indian springs\r\nthis deal is t... | 0 |
data.info()
复制代码
'pandas.core.frame.DataFrame'>
RangeIndex: 5171 entries, 0 to 5170
Data columns (total 3 columns):
label 5171 non-null object
text 5171 non-null object
label_num 5171 non-null int64
dtypes: int64(1), object(2)
memory usage: 121.3+ KB
复制代码
print('这份数据包含{}条邮件'.format(data.shape[0]))
复制代码
这份数据包含5171条邮件
复制代码
print('正常邮件一共有{}条'.format(data['label_num'].value_counts()[0]))
print('垃圾邮件一共有{}条'.format(data['label_num'].value_counts()[1]))
plt.style.use('seaborn')
plt.figure(figsize=(6, 4), dpi=100)
data['label'].value_counts().plot(kind='bar')
复制代码
正常邮件一共有3672条
垃圾邮件一共有1499条
复制代码
新建DataFrame
新建一个DataFrame,所有的处理都在它里面进行
# 只需要text与label_num
new_data = data.iloc[:, 1:]
length = len(new_data)
print('邮件数量 length =', length)
new_data.head()
复制代码
邮件数量 length = 5171
复制代码
text | label_num | |
---|---|---|
0 | Subject: enron methanol ; meter # : 988291\r\n... | 0 |
1 | Subject: hpl nom for january 9 , 2001\r\n( see... | 0 |
2 | Subject: neon retreat\r\nho ho ho , we ' re ar... | 0 |
3 | Subject: photoshop , windows , office . cheap ... | 1 |
4 | Subject: re : indian springs\r\nthis deal is t... | 0 |
查看部分具体内容
for i in range(3):
print(i, '\n', data['text'][i])
复制代码
0
Subject: enron methanol ; meter # : 988291
this is a follow up to the note i gave you on monday , 4 / 3 / 00 { preliminary
flow data provided by daren } .
please override pop ' s daily volume { presently zero } to reflect daily
activity you can obtain from gas control .
this change is needed asap for economics purposes .
1
Subject: hpl nom for january 9 , 2001
( see attached file : hplnol 09 . xls )
- hplnol 09 . xls
2
Subject: neon retreat
ho ho ho , we ' re around to that most wonderful time of the year - - - neon leaders retreat time !
i know that this time of year is extremely hectic , and that it ' s tough to think about anything past the holidays , but life does go on past the week of december 25 through january 1 , and that ' s what i ' d like you to think about for a minute .
on the calender that i handed out at the beginning of the fall semester , the retreat was scheduled for the weekend of january 5 - 6 . but because of a youth ministers conference that brad and dustin are connected with that week , we ' re going to change the date to the following weekend , january 12 - 13 . now comes the part you need to think about .
i think we all agree that it ' s important for us to get together and have some time to recharge our batteries before we get to far into the spring semester , but it can be a lot of trouble and difficult for us to get away without kids , etc . so , brad came up with a potential alternative for how we can get together on that weekend , and then you can let me know which you prefer .
the first option would be to have a retreat similar to what we ' ve done the past several years . this year we could go to the heartland country inn ( www . . com ) outside of brenham . it ' s a nice place , where we ' d have a 13 - bedroom and a 5 - bedroom house side by side . it ' s in the country , real relaxing , but also close to brenham and only about one hour and 15 minutes from here . we can golf , shop in the antique and craft stores in brenham , eat dinner together at the ranch , and spend time with each other . we ' d meet on saturday , and then return on sunday morning , just like what we ' ve done in the past .
the second option would be to stay here in houston , have dinner together at a nice restaurant , and then have dessert and a time for visiting and recharging at one of our homes on that saturday evening . this might be easier , but the trade off would be that we wouldn ' t have as much time together . i ' ll let you decide .
email me back with what would be your preference , and of course if you ' re available on that weekend . the democratic process will prevail - - majority vote will rule ! let me hear from you as soon as possible , preferably by the end of the weekend . and if the vote doesn ' t go your way , no complaining allowed ( like i tend to do ! )
have a great weekend , great golf , great fishing , great shopping , or whatever makes you happy !
bobby
复制代码
预处理
大小写
邮件中含有大小写,故将先单词替换为小写
new_data['text'] = new_data['text'].str.lower()
new_data.head()
复制代码
text | label_num | |
---|---|---|
0 | subject: enron methanol ; meter # : 988291\r\n... | 0 |
1 | subject: hpl nom for january 9 , 2001\r\n( see... | 0 |
2 | subject: neon retreat\r\nho ho ho , we ' re ar... | 0 |
3 | subject: photoshop , windows , office . cheap ... | 1 |
4 | subject: re : indian springs\r\nthis deal is t... | 0 |
停用词
使用停用词,邮件中出现的you、me、be等单词对分类没有影响,故可以将其禁用。还要注意的是所有邮件的开头中都含有单词subject(主题),我们也将其设为停用词。这里使用自然语言处理工具包nltk下的stopwords
stop_words = set(stopwords.words('english'))
stop_words.add('subject')
复制代码
分词
提取一长串句子中的每个单词,并且还要过滤掉各种符号,所以这里使用nltk下的RegexpTokenizer()函数,参数为正则表达式,例如:
string = 'I have a pen,I have an apple. (Uhh~)Apple-pen!' # 来自《PPAP》的歌词
RegexpTokenizer('[a-zA-Z]+').tokenize(string) # 过滤了所有的符号,返回一个列表
复制代码
['I', 'have', 'a', 'pen', 'I', 'have', 'an', 'apple', 'Uhh', 'Apple', 'pen']
复制代码
词形还原
在英语里面,一个单词有不同的时态,比如love与loves,只是时态不同,但是是同一个意思,于是就有了——词形还原与词干提取。而本文使用的词形还原方法。详情可以参考:词形还原工具对比 · ZMonster's Blog
这里先使用nltk包下的WordNetLemmatizer()函数,例如:
word = 'loves'
print('{}的原形为{}'.format(word, WordNetLemmatizer().lemmatize(word)))
复制代码
loves的原形为love
复制代码
把上面的所有操作一起实现,使用pandas的apply
def text_process(text):
tokenizer = RegexpTokenizer('[a-z]+') # 只匹配单词,由于已经全为小写,故可以只写成[a-z]+
lemmatizer = WordNetLemmatizer()
token = tokenizer.tokenize(text) # 分词
token = [lemmatizer.lemmatize(w) for w in token if lemmatizer.lemmatize(w) not in stop_words] # 停用词+词形还原
return token
复制代码
new_data['text'] = new_data['text'].apply(text_process)
复制代码
现在我们得到了一个比较干净的数据集了
new_data.head()
复制代码
text | label_num | |
---|---|---|
0 | [enron, methanol, meter, follow, note, gave, m... | 0 |
1 | [hpl, nom, january, see, attached, file, hplno... | 0 |
2 | [neon, retreat, ho, ho, ho, around, wonderful,... | 0 |
3 | [photoshop, window, office, cheap, main, trend... | 1 |
4 | [indian, spring, deal, book, teco, pvr, revenu... | 0 |
训练集与测试集
将处理后的数据集分为训练集与测试集,比例为3:1
seed = 20190524 # 让实验具有重复性
X = new_data['text']
y = new_data['label_num']
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=seed) # 75%作为训练集与25%作为测试集
复制代码
train = pd.concat([X_train, y_train], axis=1) # 训练集
test = pd.concat([X_test, y_test], axis=1) # 测试集
train.reset_index(drop=True, inplace=True) # 重设下标
test.reset_index(drop=True, inplace=True) # 同上
复制代码
print('训练集含有{}封邮件,测试集含有{}封邮件'.format(train.shape[0], test.shape[0]))
复制代码
训练集含有3878封邮件,测试集含有1293封邮件
复制代码
训练集中的垃圾邮件与正常邮件的数量
print(train['label_num'].value_counts())
plt.figure(figsize=(6, 4), dpi=100)
train['label_num'].value_counts().plot(kind='bar')
复制代码
0 2769
1 1109
Name: label_num, dtype: int64
复制代码
测试集中的垃圾邮件与正常邮件的数量
print(test['label_num'].value_counts())
plt.figure(figsize=(6, 4), dpi=100)
test['label_num'].value_counts().plot(kind='bar')
复制代码
0 903
1 390
Name: label_num, dtype: int64
复制代码
特征工程
如果把所有的单词都拿来统计,单词表里面的单词还是比较多的,这样让我们的模型跑起来也是比较慢的,故这里随机抽取正常邮件与垃圾邮件各10封内的单词作为单词表
ham_train = train[train['label_num'] == 0] # 正常邮件
spam_train = train[train['label_num'] == 1] # 垃圾邮件
ham_train_part = ham_train['text'].sample(10, random_state=seed) # 随机抽取的10封正常邮件
spam_train_part = spam_train['text'].sample(10, random_state=seed) # 随机抽取的10封垃圾邮件
part_words = [] # 部分的单词
for text in pd.concat([ham_train_part, spam_train_part]):
part_words += text
复制代码
part_words_set = set(part_words)
print('单词表一共有{}个单词'.format(len(part_words_set)))
复制代码
单词表一共有1528个单词
复制代码
这就大大减少了单词量
CountVectorizer
接下来我们要统计每个单词出现的次数,使用sklearn的CountVectorizer()函数,如:
words = ['This is the first sentence', 'And this is the second sentence']
cv = CountVectorizer() # 参数lowercase=True,将字母转为小写,但数据已经是小写了
count = cv.fit_transform(words)
print('cv.vocabulary_:\n', cv.vocabulary_) # 返回一个字典
print('cv.get_feature_names:\n', cv.get_feature_names()) # 返回一个列表
print('count.toarray:\n', count.toarray()) # 返回序列
复制代码
cv.vocabulary_:
{'this': 6, 'is': 2, 'the': 5, 'first': 1, 'sentence': 4, 'and': 0, 'second': 3}
cv.get_feature_names:
['and', 'first', 'is', 'second', 'sentence', 'the', 'this']
count.toarray:
[[0 1 1 0 1 1 1]
[1 0 1 1 1 1 1]]
复制代码
[0 1 1 0 1 1 1] 对应 ['and', 'first', 'is', 'second', 'sentence', 'the', 'this'],即'first'出现1次,'is'出现1次,如此类推
TfidfTransformer
接下来还要计算TF-IDF,它反映了单词在文本中的重要程度。使用sklearn包下的TfidfTransformer(),如:
tfidf = TfidfTransformer()
tfidf_matrix = tfidf.fit_transform(count)
print('idf:\n', tfidf.idf_) # 查看idf
print('tfidf:\n', tfidf_matrix.toarray()) # 查看tf-idf
复制代码
idf:
[1.40546511 1.40546511 1. 1.40546511 1. 1.
1. ]
tfidf:
[[0. 0.57496187 0.4090901 0. 0.4090901 0.4090901
0.4090901 ]
[0.49844628 0. 0.35464863 0.49844628 0.35464863 0.35464863
0.35464863]]
复制代码
可以看到 [0 1 1 0 1 1 1] 变为了 [0. 0.57496187 0.4090901 0. 0.4090901 0.4090901 0.4090901 ]
添加新一列
现在正式开始各种计算,但是开始之前先把单词整理成句子,就是CountVectorizer认识的格式
# 将正常邮件与垃圾邮件的单词都整理为句子,单词间以空格相隔,CountVectorizer()的句子里,单词是以空格分隔的
train_part_texts = [' '.join(text) for text in np.concatenate((spam_train_part.values, ham_train_part.values))]
# 训练集所有的单词整理成句子
train_all_texts = [' '.join(text) for text in train['text']]
# 测试集所有的单词整理成句子
test_all_texts = [' '.join(text) for text in test['text']]
复制代码
cv = CountVectorizer()
part_fit = cv.fit(train_part_texts) # 以部分句子为参考
train_all_count = cv.transform(train_all_texts) # 对训练集所有邮件统计单词个数
test_all_count = cv.transform(test_all_texts) # 对测试集所有邮件统计单词个数
tfidf = TfidfTransformer()
train_tfidf_matrix = tfidf.fit_transform(train_all_count)
test_tfidf_matrix = tfidf.fit_transform(test_all_count)
复制代码
print('训练集', train_tfidf_matrix.shape)
print('测试集', test_tfidf_matrix.shape)
复制代码
训练集 (3878, 1513)
测试集 (1293, 1513)
复制代码
建立模型
mnb = MultinomialNB()
mnb.fit(train_tfidf_matrix, y_train)
复制代码
MultinomialNB(alpha=1.0, class_prior=None, fit_prior=True)
复制代码
模型在测试集上的正确率
mnb.score(test_tfidf_matrix, y_test)
复制代码
0.9265274555297757
复制代码
y_pred = mnb.predict_proba(test_tfidf_matrix)
fpr, tpr, thresholds = roc_curve(y_test, y_pred[:, 1])
auc = auc(fpr, tpr)
复制代码
# roc 曲线
plt.figure(figsize=(6, 4), dpi=100)
plt.plot(fpr, tpr)
plt.title('roc = {:.4f}'.format(auc))
plt.xlabel('fpr')
plt.ylabel('tpr')
复制代码
Text(0, 0.5, 'tpr')
复制代码
到此,就完成了从数据清理到建模的一整套流程了,当然其中还要许多东西可以完善的。
ipynb文件移步:github
参考资料
- 朴素贝叶斯 — scikit-learn 0.18.1 documentation
- 词形还原工具对比 · ZMonster's Blog
- Countvectorizer sklearn example - A Data Analyst
- sklearn——朴素贝叶斯文本分类
- sklearn 实现中文数据集的垃圾邮件分类