[笔记迁移][Spark][11]Spark源码——内核架构4

文章目录

  • 8. TaskScheduler——分发Task至Executor
  • 9. Executor
  • 10. Task

8. TaskScheduler——分发Task至Executor

  /**
   * TaskScheduler提交Task的入口
   */
  override def submitTasks (taskSet : TaskSet) {
    val tasks = taskSet.tasks
    logInfo("Adding task set " + taskSet .id + " with " + tasks .length + " tasks" )
    this. synchronized {
      //给每一个TaskSet,创建一个TasSetkManager(负责它所对应的TaskSet的任务执行状况监视和管理)
      val manager = createTaskSetManager( taskSet, maxTaskFailures)
      val stage = taskSet.stageId
      val stageTaskSets =
        taskSetsByStageIdAndAttempt.getOrElseUpdate (stage , new HashMap[Int, TaskSetManager])
      //加入内存缓存中
      stageTaskSets( taskSet. stageAttemptId) = manager
      val conflictingTaskSet = stageTaskSets.exists { case (_, ts) =>
        ts. taskSet != taskSet && !ts.isZombie
      }
      if (conflictingTaskSet) {
        throw new IllegalStateException(s"more than one active taskSet for stage $stage:" +
          s " ${ stageTaskSets.toSeq .map {_._2 .taskSet .id}.mkString ("," )}" )
      }
      schedulableBuilder.addTaskSetManager(manager, manager.taskSet.properties)

      if (! isLocal && !hasReceivedTask ) {
        starvationTimer.scheduleAtFixedRate (new TimerTask() {
          override def run () {
            if (!hasLaunchedTask) {
              logWarning("Initial job has not accepted any resources; " +
                "check your cluster UI to ensure that workers are registered " +
                "and have sufficient resources" )
            } else {
              this.cancel ()
            }
          }
        }, STARVATION_TIMEOUT_MS, STARVATION_TIMEOUT_MS)
      }
      hasReceivedTask = true
    }
   
    // SparkContext初始化,创建TaskScheduler时,关键是创建SchedulerBackend,这里的 backend就是当初创建的那个
    //负责创建AppClient,向Master注册Application
    backend.reviveOffers() 
    //底层调用CoarseGrainedSchedulerBackend.reviveOffers{driverEndpoint.send(ReviveOffers)}
  }
/**
 * Schedules the tasks within a single TaskSet in the TaskSchedulerImpl. This class keeps track of
 * each task, retries tasks if they fail (up to a limited number of times), and
 * handles locality-aware(本地化) scheduling for this TaskSet via delay scheduling. The main interfaces
 * to it are resourceOffer, which asks the TaskSet whether it wants to run a task on one node,
 * and statusUpdate, which tells it that one of its tasks changed state (e.g. finished).
 *
 * THREADING: This class is designed to only be called from code with a lock on the
 * TaskScheduler (e.g. its event handlers). It should not be called from other threads.
 *
 * @param sched           the TaskSchedulerImpl associated with the TaskSetManager
 * @param taskSet         the TaskSet to manage scheduling for
 * @param maxTaskFailures if any particular task fails this number of times, the entire
 *                        task set will be aborted
 */
private[spark] class TaskSetManager(
    sched: TaskSchedulerImpl,
    val taskSet: TaskSet,
    val maxTaskFailures: Int,
    blacklistTracker: Option[ BlacklistTracker] = None,
    clock: Clock = new SystemClock ()) extends Schedulable with Logging
//CoarseGrainedSchedulerBackend.reviveOffers() -> makeOffers()    
    // Make fake resource offers on all executors
   private def makeOffers () {
     // Make sure no executor is killed while some task is launching on it
     val taskDescs = CoarseGrainedSchedulerBackend. this.synchronized {
       // Filter out executors under killing
       val activeExecutors = executorDataMap.filterKeys(executorIsAlive)
       val workOffers = activeExecutors .map {
         case (id, executorData) =>
           new WorkerOffer(id, executorData.executorHost, executorData.freeCores)
       }. toIndexedSeq
       //调用TaskSchedulerImpl的resourceOffers()执行任务分配算法,将各个Task分配到executor上
       //传入的参数是该Application所有可用的executor,并将其封装为WorkerOffer,每个WorkerOffer代表了每个Executor可用的cpu资源数量
       scheduler.resourceOffers (workOffers )
     }
     if (! taskDescs.isEmpty ) {
       //分配好Task到Executor后,执行自己的launchTasks()将分配的Task发送LanchTask消息到对应的Executor上去,由Executor启动并执行
       launchTasks(taskDescs )
     }
   }

   //根据分配好的情况,在Executor上启动Task
   // Launch tasks returned by a set of resource offers
   private def launchTasks (tasks : Seq[Seq[TaskDescription]]) {
     for ( task <- tasks. flatten) {
       //将每个Executor要执行的Task信息统一进行序列化操作
       val serializedTask = TaskDescription.encode(task)
       if (serializedTask.limit() >= maxRpcMessageSize) {
         scheduler.taskIdToTaskSetManager.get(task.taskId).foreach { taskSetMgr =>
           try {
             var msg = "Serialized task %s:%d was %d bytes, which exceeds max allowed: " +
               "spark.rpc.message.maxSize (%d bytes). Consider increasing " +
               "spark.rpc.message.maxSize or using broadcast variables for large values."
             msg = msg.format(task.taskId, task.index, serializedTask.limit(), maxRpcMessageSize)
             taskSetMgr.abort(msg)
           } catch {
             case e: Exception => logError("Exception in error callback" , e)
           }
         }
       }
       else {
         //找到对应的Executor
         val executorData = executorDataMap(task.executorId)
         //减去要使用的cpu资源
         executorData.freeCores -= scheduler.CPUS_PER_TASK

         logDebug(s "Launching task ${task.taskId} on executor id: ${task.executorId} hostname: " +
           s "${executorData.executorHost} .")
         //向Executor发送LaunchTask消息,来在Executor上启动Task
         executorData.executorEndpoint.send(LaunchTask( new SerializableBuffer(serializedTask)))
       }
     }
   }
 /**
  * Called by cluster manager to offer resources on slaves. We respond by asking our active task
  * sets for tasks in order of priority. We fill each node with tasks in a round-robin manner so
  * that tasks are balanced across the cluster.
  */
 def resourceOffers( offers: IndexedSeq[WorkerOffer]): Seq[Seq [TaskDescription]] = synchronized {
   // Mark each slave as alive and remember its hostname
   // Also track if new executor is added
   var newExecAvail = false
   for ( o <- offers) {
     if (! hostToExecutors.contains (o .host )) {
       hostToExecutors(o .host ) = new HashSet[String]()
     }
     if (! executorIdToRunningTaskIds.contains (o .executorId )) {
       hostToExecutors(o .host ) += o .executorId
       executorAdded(o .executorId , o .host )
       executorIdToHost(o .executorId ) = o .host
       executorIdToRunningTaskIds(o .executorId ) = HashSet [Long]()
       newExecAvail = true
     }
     for ( rack <- getRackForHost(o .host )) {
       hostsByRack.getOrElseUpdate (rack , new HashSet[String]() ) += o .host
     }
   }

   // Before making any offers, remove any nodes from the blacklist whose blacklist has expired. Do
   // this here to avoid a separate thread and added synchronization overhead, and also because
   // updating the blacklist is only relevant when task offers are being made.
   blacklistTrackerOpt. foreach(_. applyBlacklistTimeout())

   val filteredOffers = blacklistTrackerOpt.map { blacklistTracker =>
     offers.filter { offer =>
       ! blacklistTracker.isNodeBlacklisted (offer.host) &&
         !blacklistTracker.isExecutorBlacklisted(offer.executorId)
     }
   }.getOrElse(offers)

   // 将可用的Executor打散,尽量进行负载均衡
   val shuffledOffers = shuffleOffers(filteredOffers )
  
   // Build a list of tasks to assign to each worker.
   // tasks,类似一个二维数组,且每个子ArrayBuffer的数量是固定的,即为该Executor可用的CPU数量
   val tasks = shuffledOffers. map( o => new ArrayBuffer[TaskDescription]( o. cores / CPUS_PER_TASK))
   val availableCpus = shuffledOffers.map (o => o .cores ).toArray

   // 从rootPool中取出排序的TaskSet,rootPool调度池是在TaskSchedulerImpl,SchedulerBackend创建完成后,执行的initialize()创建的
   // 所有提交的TaskSet首先会放入这个调度池,然后再执行Task分配算法时,从这个调度池中,取出排好队的TaskSet
   val sortedTaskSets = rootPool.getSortedTaskSetQueue
   for ( taskSet <- sortedTaskSets) {
     logDebug( "parentName: %s, name: %s, runningTasks: %s" .format(
       taskSet.parent.name, taskSet.name, taskSet.runningTasks))
     if (newExecAvail) {
       taskSet.executorAdded()
     }
   }

   // 分配算法核心,双重for循环,对每个TaskSet从最好的本地化级别遍历到最差级别
   // Take each TaskSet in our scheduling order, and then offer it each node in increasing order
   // of locality levels so that it gets a chance to launch local tasks on all of them.
   // NOTE: the preferredLocality order: PROCESS_LOCAL, NODE_LOCAL, NO_PREF, RACK_LOCAL, ANY
   // PROCESS_LOCAL: 进程本地化,RDD的partition和Task进入一个Executor,速度当然快
   // NODE_LOCAL: 节点本地化,RDD的partition和Task不在一个Executor进程,但在一个Worker节点
   // NO_PREF : 没有本地化级别
   // RACK_LOCAL : 机架本地化,直到RDD的partition和Task在同一机架上
   // ANY : 任意本地化级别
   for ( taskSet <- sortedTaskSets) {
     var launchedAnyTask = false
     var launchedTaskAtCurrentMaxLocality = false
     for ( currentMaxLocality <- taskSet.myLocalityLevels) {
       do {
         //对当前TaskSet中的Task,尝试优先使用最小本地化级别在Executor上启动
         //若无法启动,就跳出这个do-while循环,进入下一种本地化级别即放大本地化级别
         //以此类推,直至尝试将TaskSet在某些本地化级别下,让Task在Executor上全部启动
         launchedTaskAtCurrentMaxLocality = resourceOfferSingleTaskSet(
           taskSet, currentMaxLocality, shuffledOffers, availableCpus, tasks)
         launchedAnyTask |= launchedTaskAtCurrentMaxLocality
       } while (launchedTaskAtCurrentMaxLocality)
     }
     if (!launchedAnyTask) {
       taskSet.abortIfCompletelyBlacklisted(hostToExecutors)
     }
   }

   if (tasks.size > 0) {
     hasLaunchedTask = true
   }
   return tasks
 }

 private def resourceOfferSingleTaskSet (
     taskSet: TaskSetManager,
     maxLocality: TaskLocality,
     shuffledOffers: Seq[WorkerOffer],
     availableCpus: Array[Int],
     tasks: IndexedSeq[ArrayBuffer[ TaskDescription]]) : Boolean = {
   var launchedTask = false
   // nodes and executors that are blacklisted for the entire application have already been
   // filtered out by this point
   //遍历所有Executor
   for ( i <- 0 until shuffledOffers.size ) {
     val execId = shuffledOffers( i). executorId
     val host = shuffledOffers( i). host
     //若当前Executor的cpu数量至少大于每个Task要使用的cpu数量,默认是1
     if (availableCpus( i) >= CPUS_PER_TASK) {
       try {
         //调用TaskSetManager的resorceOffer找到在该Executor上以这种本地化级别可以启动的那些Task
         //TaskSetManager的resorceOffer大致过程:判断该Executor在这种本地化级别之前的等待时间,若本地化级别的等待时间在一定范围内,则认为Task使用该本地化级别可以在Executor上启动
         for (task <- taskSet .resourceOffer (execId , host , maxLocality )) {
           //当如tasks二位数据,给指定的Executor加上要启动的Task
           tasks( i) += task
           //将相应的分配信息加入内存缓存
           val tid = task .taskId
           taskIdToTaskSetManager(tid ) = taskSet
           taskIdToExecutorId(tid ) = execId
           executorIdToRunningTaskIds(execId ).add (tid )
           availableCpus(i) -= CPUS_PER_TASK
           assert( availableCpus(i ) >= 0 )
           launchedTask = true
         }
       } catch {
         case e : TaskNotSerializableException =>
           logError(s"Resource offer failed, task set ${ taskSet. name} was not serializable")
           // Do not offer resources for this task, but don't throw an error to allow other
           // task sets to be submitted.
           return launchedTask
       }
     }
   }
   return launchedTask
 }

9. Executor

[笔记迁移][Spark][11]Spark源码——内核架构4_第1张图片
   [1] Executor反向注册机制

  override def onStart () {
    logInfo("Connecting to driver: " + driverUrl)
    rpcEnv.asyncSetupEndpointRefByURI(driverUrl). flatMap { ref =>
      // This is a very fast action so we can use "ThreadUtils.sameThread"
      driver = Some(ref)
      //CoarseGrainedExecutorBackend启动后直接向Driver发送RegisterExecutor消息
      ref.ask[Boolean](RegisterExecutor(executorId, self, hostname, cores, extractLogUrls))
    }(ThreadUtils.sameThread). onComplete {
      // This is a very fast action so we can use "ThreadUtils.sameThread"
      case Success(msg) =>
        // Always receive `true`. Just ignore it
      case Failure(e) =>
        exitExecutor( 1, s "Cannot register with driver: $driverUrl" , e, notifyDriver = false )
    }(ThreadUtils.sameThread)
  }

  override def receive : PartialFunction [Any, Unit] = {
    //在Driver注册Executor成功后,将回送RegisteredExecutor消息,该CoarseGrainedExecutorBackend创建Executor(用于大部分功能实现)
    case RegisteredExecutor =>
      logInfo("Successfully registered with driver" )
      try {
        executor = new Executor(executorId, hostname, env, userClassPath, isLocal = false)
      } catch {
        case NonFatal (e ) =>
          exitExecutor(1 , "Unable to create executor due to " + e .getMessage , e )
      }
      // ... ...
    }

   [2] Task启动机制

  //TaskSchedulerImpl发送LaunchTask消息给Executor,启动已给该Executor分配的Task
  case LaunchTask(data ) =>
    if (executor == null) {
      exitExecutor(1 , "Received LaunchTask command but executor was null" )
    } else {
      //反序列化TaskDescription
      val taskDesc = TaskDescription .decode (data .value )
      logInfo("Got assigned task " + taskDesc .taskId )
      //启动一个Task
      executor.launchTask( this, taskDesc)
    }

def launchTask(context: ExecutorBackend, taskDescription : TaskDescription): Unit = {
  //TaskRunner extends Runnable
  //对每一个Task创建一个TaskRunner线程
  val tr = new TaskRunner( context, taskDescription)
  //将TaskRunner加入内存缓存ConcurrentHashMap
  runningTasks. put( taskDescription.taskId , tr )
  //Executors.newCachedThreadPool->threadPool,直接将TaskRunner放入线程池执行(排队)
  threadPool.execute(tr)
}

10. Task

[笔记迁移][Spark][11]Spark源码——内核架构4_第2张图片
Task原理入口

  class TaskRunner(
      execBackend: ExecutorBackend,
      private val taskDescription : TaskDescription)
    extends Runnable {
      //... ...

     
override def run (): Unit = {
      threadId = Thread. currentThread.getId
      Thread. currentThread.setName (threadName )
      val threadMXBean = ManagementFactory. getThreadMXBean
      val taskMemoryManager = new TaskMemoryManager(env.memoryManager, taskId)
      val deserializeStartTime = System. currentTimeMillis()
      val deserializeStartCpuTime = if (threadMXBean.isCurrentThreadCpuTimeSupported ) {
        threadMXBean.getCurrentThreadCpuTime
      } else 0L
      Thread. currentThread.setContextClassLoader (replClassLoader )
      val ser = env.closureSerializer.newInstance()
      logInfo(s"Running $ taskName (TID $ taskId)" )
      execBackend. statusUpdate(taskId, TaskState. RUNNING, EMPTY_BYTE_BUFFER)
      var taskStart: Long = 0
      var taskStartCpu: Long = 0
      startGCTime = computeTotalGcTime()

      try {
        // Must be set before updateDependencies() is called, in case fetching dependencies
        // requires access to properties contained within (e.g. for access control).
        // 对序列化的Task数据进行反序列化
        Executor. taskDeserializationProps.set (taskDescription .properties)
        // 通过网络拷贝需要的资源:文件,Jars等
        updateDependencies(taskDescription .addedFiles, taskDescription.addedJars)
        // 通过正式的反序列化操作,将整个Task的数据集反序列化
        task = ser. deserialize[Task[Any]](
          taskDescription.serializedTask, Thread.currentThread.getContextClassLoader)
        task. localProperties = taskDescription.properties
        task.setTaskMemoryManager(taskMemoryManager)

        // If this task has been killed before we deserialized it, let's quit now. Otherwise,
        // continue executing the task.
        val killReason = reasonIfKilled
        if (killReason .isDefined ) {
          // Throw an exception rather than returning, because returning within a try{} block
          // causes a NonLocalReturnControl exception to be thrown. The NonLocalReturnControl
          // exception will be caught by the catch block, leading to an incorrect ExceptionFailure
          // for the task.
          throw new TaskKilledException (killReason .get )
        }

        // The purpose of updating the epoch here is to invalidate executor map output status cache
        // in case FetchFailures have occurred. In local mode `env.mapOutputTracker` will be
        // MapOutputTrackerMaster and its cache invalidation is not based on epoch numbers so
        // we don't need to make any special calls here.
        if (!isLocal ) {
          logDebug("Task " + taskId + "'s epoch is " + task.epoch)
          env.mapOutputTracker.asInstanceOf[MapOutputTrackerWorker].updateEpoch(task.epoch)
        }

        // Run the actual task and measure its runtime.
        taskStart = System.currentTimeMillis ()
        taskStartCpu = if (threadMXBean .isCurrentThreadCpuTimeSupported ) {
          threadMXBean.getCurrentThreadCpuTime
        } else 0L
        var threwException = true
       // KEY!!!最关键的部分,使用Task的run
       // value对ShuffleMapTask来说,其实就是MapStatus,封装了ShuffleMapTask的计算数据,输出的位置
       // 若后面还是一个ShuffleMapTask,就会去联系MapOutputTracker,获取上一个ShuffleMapTask的输出位置,然后通过网络拉取数据
       // ResultTask也是一样的
        val value = try {
          val res = task.run(
            taskAttemptId = taskId,
            attemptNumber = taskDescription.attemptNumber,
            metricsSystem = env.metricsSystem)
          threwException = false
          res
        } finally {
          val releasedLocks = env.blockManager.releaseAllLocksForTask(taskId)
          val freedMemory = taskMemoryManager .cleanUpAllAllocatedMemory ()

          if (freedMemory > 0 && !threwException) {
            val errMsg = s"Managed memory leak detected; size = $ freedMemory bytes, TID = $taskId"
            if (conf.getBoolean("spark.unsafe.exceptionOnMemoryLeak" , false)) {
              throw new SparkException( errMsg)
            } else {
              logWarning(errMsg)
            }
          }

          if (releasedLocks .nonEmpty && !threwException) {
            val errMsg =
              s "${ releasedLocks.size } block locks were not released by TID = $taskId:\n " +
                releasedLocks.mkString ("[" , ", " , "]" )
            if (conf.getBoolean("spark.storage.exceptionOnPinLeak" , false)) {
              throw new SparkException( errMsg)
            } else {
              logInfo(errMsg)
            }
          }
        }
        task.context.fetchFailed.foreach { fetchFailure =>
          // uh -oh.  it appears the user code has caught the fetch-failure without throwing any
          // other exceptions.  Its *possible* this is what the user meant to do (though highly
          // unlikely).  So we will log an error and keep going.
          logError(s "TID ${taskId} completed successfully though internally it encountered " +
            s "unrecoverable fetch failures!  Most likely this means user code is incorrectly " +
            s "swallowing Spark's internal ${classOf [FetchFailedException]}", fetchFailure)
        }
        val taskFinish = System.currentTimeMillis()
        val taskFinishCpu = if (threadMXBean. isCurrentThreadCpuTimeSupported) {
          threadMXBean.getCurrentThreadCpuTime
        } else 0L

        // If the task has been killed, let's fail it.
        task.context.killTaskIfInterrupted()

        // 对MapStatus进行各种序列化和封装,通过网络发送给Driver
        val resultSer = env.serializer.newInstance()
        val beforeSerialization = System.currentTimeMillis()
        val valueBytes = resultSer .serialize (value)
        val afterSerialization = System.currentTimeMillis()

        // Deserialization happens in two parts: first, we deserialize a Task object, which
        // includes the Partition. Second, Task.run() deserializes the RDD and function to be run.
        // 计算出Task相关的统计信息Metrics(显示在SparkUI->4040端口):ExecutorDeserializeTime / ExecutorDeserializeCpuTime / ExecutorRunTime /  ExecutorCpuTime / JvmGCTime / ResultSerializationTime 
        task.metrics.setExecutorDeserializeTime(
          (taskStart - deserializeStartTime) + task.executorDeserializeTime)
        task.metrics.setExecutorDeserializeCpuTime(
          (taskStartCpu - deserializeStartCpuTime) + task.executorDeserializeCpuTime)
        // We need to subtract Task.run()'s deserialization time to avoid double-counting
        task.metrics.setExecutorRunTime((taskFinish - taskStart) - task.executorDeserializeTime)
        task.metrics.setExecutorCpuTime(
          (taskFinishCpu - taskStartCpu) - task.executorDeserializeCpuTime)
        task.metrics.setJvmGCTime(computeTotalGcTime() - startGCTime)
        task.metrics.setResultSerializationTime(afterSerialization - beforeSerialization)

        // Expose task metrics using the Dropwizard metrics system.
        // Update task metrics counters
        executorSource.METRIC_CPU_TIME.inc(task.metrics.executorCpuTime)
        executorSource.METRIC_RUN_TIME.inc(task.metrics.executorRunTime)
        executorSource.METRIC_JVM_GC_TIME.inc(task.metrics.jvmGCTime)
        executorSource.METRIC_DESERIALIZE_TIME.inc(task.metrics.executorDeserializeTime)
        executorSource.METRIC_DESERIALIZE_CPU_TIME.inc(task.metrics.executorDeserializeCpuTime)
        executorSource.METRIC_RESULT_SERIALIZE_TIME.inc(task.metrics.resultSerializationTime)
        executorSource.METRIC_SHUFFLE_FETCH_WAIT_TIME
          .inc(task.metrics.shuffleReadMetrics.fetchWaitTime)
        executorSource.METRIC_SHUFFLE_WRITE_TIME.inc(task.metrics.shuffleWriteMetrics.writeTime)
        executorSource.METRIC_SHUFFLE_TOTAL_BYTES_READ
          .inc(task.metrics.shuffleReadMetrics.totalBytesRead)
        executorSource.METRIC_SHUFFLE_REMOTE_BYTES_READ
          .inc(task.metrics.shuffleReadMetrics.remoteBytesRead)
        executorSource.METRIC_SHUFFLE_REMOTE_BYTES_READ_TO_DISK
          .inc(task.metrics.shuffleReadMetrics.remoteBytesReadToDisk)
        executorSource.METRIC_SHUFFLE_LOCAL_BYTES_READ
          .inc(task.metrics.shuffleReadMetrics.localBytesRead)
        executorSource.METRIC_SHUFFLE_RECORDS_READ
          .inc(task.metrics.shuffleReadMetrics.recordsRead)
        executorSource.METRIC_SHUFFLE_REMOTE_BLOCKS_FETCHED
          .inc(task.metrics.shuffleReadMetrics.remoteBlocksFetched)
        executorSource.METRIC_SHUFFLE_LOCAL_BLOCKS_FETCHED
          .inc(task.metrics.shuffleReadMetrics.localBlocksFetched)
        executorSource.METRIC_SHUFFLE_BYTES_WRITTEN
          .inc(task.metrics.shuffleWriteMetrics.bytesWritten)
        executorSource.METRIC_SHUFFLE_RECORDS_WRITTEN
          .inc(task.metrics.shuffleWriteMetrics.recordsWritten)
        executorSource.METRIC_INPUT_BYTES_READ
          .inc(task.metrics.inputMetrics.bytesRead)
        executorSource.METRIC_INPUT_RECORDS_READ
          .inc(task.metrics.inputMetrics.recordsRead)
        executorSource.METRIC_OUTPUT_BYTES_WRITTEN
          .inc(task.metrics.outputMetrics.bytesWritten)
        executorSource.METRIC_OUTPUT_RECORDS_WRITTEN
          .inc(task.metrics.inputMetrics.recordsRead)
        executorSource.METRIC_RESULT_SIZE.inc(task.metrics.resultSize)
        executorSource.METRIC_DISK_BYTES_SPILLED.inc(task.metrics.diskBytesSpilled)
        executorSource.METRIC_MEMORY_BYTES_SPILLED.inc(task.metrics.memoryBytesSpilled)

        // Note: accumulator updates must be collected after TaskMetrics is updated
        val accumUpdates = task.collectAccumulatorUpdates()
        // TODO: do not serialize value twice
        val directResult = new DirectTaskResult (valueBytes , accumUpdates )
        val serializedDirectResult = ser .serialize (directResult)
        val resultSize = serializedDirectResult .limit ()

        // directSend = sending directly back to the driver
        val serializedResult : ByteBuffer = {
          if (maxResultSize > 0 && resultSize > maxResultSize) {
            logWarning(s"Finished $taskName (TID $taskId ). Result is larger than maxResultSize " +
              s "(${ Utils.bytesToString( resultSize)} > ${Utils .bytesToString (maxResultSize)}), " +
              s "dropping it.")
            ser. serialize(new IndirectTaskResult[Any](TaskResultBlockId(taskId), resultSize))
          } else if (resultSize > maxDirectResultSize) {
            val blockId = TaskResultBlockId (taskId)
            env.blockManager.putBytes(
              blockId,
              new ChunkedByteBuffer(serializedDirectResult.duplicate()),
              StorageLevel.MEMORY_AND_DISK_SER)
            logInfo(
              s "Finished $taskName (TID $ taskId). $ resultSize bytes result sent via BlockManager)")
            ser. serialize(new IndirectTaskResult[Any](blockId, resultSize))
          } else {
            logInfo(s"Finished $taskName (TID $taskId ). $resultSize bytes result sent to driver")
            serializedDirectResult
          }
        }

        setTaskFinishedAndClearInterruptStatus()
        // KEY 调用Executor所在的CoarseGrainedExecutorBackend.statusUpdate发送MapStauts
        execBackend.statusUpdate (taskId, TaskState. FINISHED, serializedResult)

      } catch {
        case t : Throwable if hasFetchFailure && !Utils. isFatalError(t ) =>
          val reason = task .context .fetchFailed .get .toTaskFailedReason
          if (!t .isInstanceOf [FetchFailedException ]) {
            // there was a fetch failure in the task, but some user code wrapped that exception
            // and threw something else.  Regardless, we treat it as a fetch failure.
            val fetchFailedCls = classOf [FetchFailedException ].getName
            logWarning(s"TID ${taskId} encountered a ${fetchFailedCls } and " +
              s "failed, but the ${fetchFailedCls } was hidden by another " +
              s "exception.  Spark is handling this like a fetch failure and ignoring the " +
              s "other exception: $t" )
          }
          setTaskFinishedAndClearInterruptStatus()
          execBackend.statusUpdate (taskId, TaskState. FAILED, ser.serialize (reason))

        case t : TaskKilledException =>
          logInfo(s"Executor killed $taskName (TID $taskId ), reason: ${t .reason}")
          setTaskFinishedAndClearInterruptStatus()
          execBackend.statusUpdate (taskId, TaskState. KILLED, ser.serialize (TaskKilled(t.reason)))

        case _: InterruptedException | NonFatal (_) if
            task != null && task.reasonIfKilled.isDefined =>
          val killReason = task.reasonIfKilled.getOrElse("unknown reason")
          logInfo(s"Executor interrupted and killed $taskName (TID $taskId ), reason: $killReason")
          setTaskFinishedAndClearInterruptStatus()
          execBackend.statusUpdate (
            taskId, TaskState.KILLED, ser.serialize(TaskKilled(killReason)))

        case CausedBy( cDE: CommitDeniedException) =>
          val reason = cDE .toTaskCommitDeniedReason
          setTaskFinishedAndClearInterruptStatus()
          execBackend.statusUpdate (taskId, TaskState. KILLED, ser.serialize (reason))

        case t : Throwable =>
          // Attempt to exit cleanly by informing the driver of our failure.
          // If anything goes wrong (or this was a fatal exception), we will delegate to
          // the default uncaught exception handler, which will terminate the Executor.
          logError(s"Exception in $taskName (TID $taskId )", t)

          // SPARK-20904: Do not report failure to driver if if happened during shut down. Because
          // libraries may set up shutdown hooks that race with running tasks during shutdown,
          // spurious failures may occur and can result in improper accounting in the driver (e.g.
          // the task failure would not be ignored if the shutdown happened because of premption,
          // instead of an app issue).
          if (!ShutdownHookManager. inShutdown()) {
            // Collect latest accumulator values to report back to the driver
            val accums : Seq[AccumulatorV2 [_, _]] =
              if (task != null) {
                task.metrics.setExecutorRunTime(System.currentTimeMillis() - taskStart)
                task.metrics.setJvmGCTime(computeTotalGcTime() - startGCTime)
                task.collectAccumulatorUpdates( taskFailed = true )
              } else {
                Seq. empty
              }

            val accUpdates = accums .map (acc => acc .toInfo (Some(acc.value), None))

            val serializedTaskEndReason = {
              try {
                ser. serialize(new ExceptionFailure(t, accUpdates).withAccums(accums))
              } catch {
                case _: NotSerializableException =>
                  // t is not serializable so just send the stacktrace
                  ser. serialize(new ExceptionFailure(t, accUpdates, false).withAccums(accums))
              }
            }
            setTaskFinishedAndClearInterruptStatus()
            execBackend.statusUpdate (taskId, TaskState. FAILED, serializedTaskEndReason)
          } else {
            logInfo("Not reporting error to driver during JVM shutdown.")
          }

          // Don't forcibly exit unless the exception was inherently fatal, to avoid
          // stopping other tasks unnecessarily.
          if (!t .isInstanceOf [SparkOutOfMemoryError ] && Utils. isFatalError(t )) {
            uncaughtExceptionHandler.uncaughtException (Thread.currentThread (), t )
          }
      } finally {
        runningTasks.remove (taskId )
      }
    }
   

 /**
   * Download any missing dependencies if we receive a new set of files and JARs from the
   * SparkContext. Also adds any new JARs we fetched to the class loader.
   */
  private def updateDependencies (newFiles : Map [String, Long], newJars: Map[String, Long]) {
    // 获取Hadoop配置文件
    lazy val hadoopConf = SparkHadoopUtil. get. newConfiguration(conf)

    // Java同步块,解决共享资源如currentFiles访问的线程安全
    // Task实际上是以Java线程的方式,在一个CoarseExecutorBackend线程内并发运行
    synchronized {
      // Fetch missing dependencies 
      // 遍历要拉取的文件
      for (( name, timestamp) <- newFiles if currentFiles. getOrElse(name , -1L) < timestamp) {
        logInfo("Fetching " + name + " with timestamp " + timestamp )
        // Fetch file with useCache mode, close cache for local mode.
        // 通过网络通信从远程拉取文件
        Utils.fetchFile (name , new File(SparkFiles .getRootDirectory ()), conf,
          env.securityManager, hadoopConf, timestamp , useCache = !isLocal)
        currentFiles(name ) = timestamp
      }
      // 遍历要拉取的Jars
      for (( name, timestamp) <- newJars ) {
        val localName = new URI(name). getPath.split ("/"). last
        val currentTimeStamp = currentJars .get (name )
          . orElse( currentJars.get (localName))
          . getOrElse(-1L )
        if (currentTimeStamp < timestamp ) {
          logInfo("Fetching " + name + " with timestamp " + timestamp )
          // Fetch file with useCache mode, close cache for local mode.
          Utils.fetchFile(name, new File(SparkFiles.getRootDirectory ()), conf,
            env.securityManager, hadoopConf, timestamp , useCache = !isLocal)
          currentJars(name ) = timestamp
          // Add it to our class loader
          val url = new File(SparkFiles .getRootDirectory (), localName ).toURI .toURL
          if (!urlClassLoader.getURLs().contains (url)) {
            logInfo("Adding " + url + " to class loader")
            urlClassLoader.addURL(url)
          }
        }
      }
    }
  }

      //... ...
    }
  /**
   * Called by [[org.apache.spark.executor.Executor]] to run this task.
   *
   * @param taskAttemptId an identifier for this task attempt that is unique within a SparkContext.
   * @param attemptNumber how many times this task has been attempted (0 for the first attempt)
   * @return the result of the task along with updates of Accumulators.
   */
  final def run (
      taskAttemptId: Long,
      attemptNumber: Int,
      metricsSystem: MetricsSystem): T = {
    SparkEnv.get .blockManager .registerTask (taskAttemptId )
    //创建执行上下文TaskContext
    context = new TaskContextImpl(
      stageId,
      stageAttemptId, // stageAttemptId and stageAttemptNumber are semantically equal
      partitionId,
      taskAttemptId,
      attemptNumber,
      taskMemoryManager,
      localProperties,
      metricsSystem,
      metrics)
    TaskContext.setTaskContext (context)
    taskThread = Thread. currentThread()

    if (_reasonIfKilled != null) {
      kill(interruptThread = false, _reasonIfKilled )
    }

    new CallerContext(
      "TASK",
      SparkEnv.get .conf .get (APP_CALLER_CONTEXT ),
      appId,
      appAttemptId,
      jobId,
      Option(stageId),
      Option(stageAttemptId),
      Option( taskAttemptId),
      Option( attemptNumber)).setCurrentContext ()

    try {
      // Key!!! 调用抽象方法runTask,子类实现ShuffleMapTask / ResultTask
      runTask(context)
    } catch {
      case e: Throwable =>
        // Catch all errors; run task failure callbacks, and rethrow the exception.
        try {
          context.markTaskFailed(e)
        } catch {
          case t : Throwable =>
            e. addSuppressed(t )
        }
        context.markTaskCompleted(Some(e))
        throw e
    } finally {
      try {
        // Call the task completion callbacks. If "markTaskCompleted" is called twice, the second
        // one is no-op .
        context.markTaskCompleted(None)
      } finally {
        try {
          Utils.tryLogNonFatalError {
            // Release memory used by this thread for unrolling blocks
            SparkEnv.get.blockManager. memoryStore.releaseUnrollMemoryForThisTask (MemoryMode. ON_HEAP)
            SparkEnv.get.blockManager. memoryStore.releaseUnrollMemoryForThisTask (
              MemoryMode.OFF_HEAP)
            // Notify any tasks waiting for execution memory to be freed to wake up and try to
            // acquire memory again. This makes impossible the scenario where a task sleeps forever
            // because there are no other tasks left to notify it. Since this is safe to do but may
            // not be strictly necessary, we should revisit whether we can remove this in the
            // future.
            val memoryManager = SparkEnv. get. memoryManager
            memoryManager.synchronized { memoryManager.notifyAll() }
          }
        } finally {
          // Though we unset the ThreadLocal here, the context member variable itself is still
          // queried directly in the TaskRunner to check for FetchFailedExceptions.
          TaskContext.unset()
        }
      }
    }
  }
/**
 * A ShuffleMapTask divides the elements of an RDD into multiple buckets (based on a partitioner
 * specified in the ShuffleDependency. Default is HashPartitioner).
 *
 * See [[org.apache.spark.scheduler.Task]] for more information.
 *
 * @param stageId id of the stage this task belongs to
 * @param stageAttemptId attempt id of the stage this task belongs to
 * @param taskBinary broadcast version of the RDD and the ShuffleDependency. Once deserialized,
 *                   the type should be (RDD[_], ShuffleDependency[_, _, _]).
 * @param partition partition of the RDD this task is associated with
 * @param locs preferred task execution locations for locality scheduling
 * @param localProperties copy of thread-local properties set by the user on the driver side.
 * @param serializedTaskMetrics a `TaskMetrics` that is created and serialized on the driver side
 *                              and sent to executor side.
 *
 * The parameters below are optional:
 * @param jobId id of the job this task belongs to
 * @param appId id of the app this task belongs to
 * @param appAttemptId attempt id of the app this task belongs to
 */
private[spark] class ShuffleMapTask(
    stageId: Int,
    stageAttemptId: Int,
    taskBinary: Broadcast[Array[Byte]],
    partition: Partition,
    @transient private var locs : Seq[TaskLocation],
    localProperties: Properties,
    serializedTaskMetrics: Array[Byte],
    jobId: Option[Int] = None,
    appId: Option[ String] = None ,
    appAttemptId: Option[ String] = None )
  extends Task[ MapStatus](stageId , stageAttemptId , partition .index , localProperties,
    serializedTaskMetrics, jobId, appId, appAttemptId)
  with Logging {
    //......
  override def runTask (context : TaskContext): MapStatus = {
    // Deserialize the RDD using the broadcast variable.
    // 多个Task并行/并发运行在多个Executor中,可能都不在一个节点,但一个Stage的Task面对的RDD是一样的
    // 因此,将通过Broadcast variable直接读出RDD自己处理的部分
    val threadMXBean = ManagementFactory. getThreadMXBean
    val deserializeStartTime = System. currentTimeMillis()
    val deserializeStartCpuTime = if (threadMXBean.isCurrentThreadCpuTimeSupported ) {
      threadMXBean. getCurrentThreadCpuTime
    } else 0L
    val ser = SparkEnv.get .closureSerializer .newInstance ()
    val ( rdd, dep) = ser. deserialize[(RDD[_], ShuffleDependency[_, _, _])](
      ByteBuffer.wrap(taskBinary.value), Thread.currentThread.getContextClassLoader)
    _executorDeserializeTime = System. currentTimeMillis() - deserializeStartTime
    _executorDeserializeCpuTime = if (threadMXBean.isCurrentThreadCpuTimeSupported ) {
      threadMXBean. getCurrentThreadCpuTime - deserializeStartCpuTime
    } else 0L

    var writer: ShuffleWriter[Any, Any] = null
    try {
      // 从ShufflerManager中获取ShuffleWriter
      val manager = SparkEnv.get .shuffleManager
      writer = manager.getWriter[Any, Any](dep.shuffleHandle, partitionId, context)
      // Key 传入当前Task要处理的partition,核心逻辑就在RDD的iterator()中针对RDD的某partition执行自定义算子
      // 返回的数据都是通过ShuffleWriter,经过HashPartitioner进行分区后写入对应的分区bucket
      writer.write(rdd.iterator(partition, context).asInstanceOf[Iterator[_ <: Product2[Any, Any]]])
    
      // 最后,返回MapStatus,其中封装了ShuffleMapTask计算后的数据,存储在BlockManager的相关信息
      writer.stop(success = true). get
    } catch {
      case e: Exception =>
        try {
          if (writer != null) {
            writer. stop( success = false)
          }
        } catch {
          case e : Exception =>
            log.debug("Could not stop writer", e)
        }
        throw e
    }
  }
    //......
}

// ResultTask
  override def runTask (context : TaskContext): U = {
    // Deserialize the RDD and the func using the broadcast variables.
    val threadMXBean = ManagementFactory. getThreadMXBean
    val deserializeStartTime = System. currentTimeMillis()
    val deserializeStartCpuTime = if (threadMXBean.isCurrentThreadCpuTimeSupported ) {
      threadMXBean. getCurrentThreadCpuTime
    } else 0L
    //基本的反序列化
    val ser = SparkEnv.get .closureSerializer .newInstance ()
    val ( rdd, func) = ser. deserialize[(RDD[T ], (TaskContext, Iterator[ T]) => U)](
      ByteBuffer.wrap(taskBinary.value), Thread.currentThread.getContextClassLoader)
    _executorDeserializeTime = System. currentTimeMillis() - deserializeStartTime
    _executorDeserializeCpuTime = if (threadMXBean.isCurrentThreadCpuTimeSupported ) {
      threadMXBean. getCurrentThreadCpuTime - deserializeStartCpuTime
    } else 0L

    //通过RDD的iterator执行自定义的算子
    func(context, rdd.iterator(partition, context))
  }
//RDD
  /**
   * Internal method to this RDD; will read from cache if applicable, or otherwise compute it.
   * This should ''not'' be called by users directly, but is available for implementors of custom
   * subclasses of RDD.
   */
  final def iterator (split : Partition, context: TaskContext): Iterator[ T] = {
    if (storageLevel != StorageLevel.NONE) {
      getOrCompute( split, context)
    } else {
      computeOrReadCheckpoint( split, context)
    }
  }

  /**
   * Compute an RDD partition or read it from a checkpoint if the RDD is checkpointing.
   */
  private[spark] def computeOrReadCheckpoint (split : Partition, context: TaskContext): Iterator[ T] =
  {
    if (isCheckpointedAndMaterialized) {
      firstParent[ T]. iterator( split, context)
    } else {
      //又是抽象方法->MapPartitionsRDD
      compute(split, context)
    }
  }

//MapPartitionsRDD
  /**
   * f可以理解为自定义算子函数,但是Spark内部的封装还实现了其他逻辑
   * 调用到这里为止,其实就是针对RDD的partition执行计算操作,返回新的RDD的partition iterator
   */
  override def compute (split : Partition, context: TaskContext): Iterator[ U] =
    f(context, split.index, firstParent[ T]. iterator( split, context))
// CoarseGrainedExecutorBackend  
overridedefstatusUpdate(taskId: Long, state: TaskState, data: ByteBuffer) {
    val msg = StatusUpdate( executorId, taskId , state , data )
    driver match {
      case Some(driverRef ) => driverRef .send (msg )
      case None => logWarning(s "Drop $msg because has not yet connected to driver")
    }
  }

// CoarseGrainedSchedulerBackend
      case StatusUpdate(executorId , taskId , state , data ) =>
        scheduler.statusUpdate (taskId , state , data .value )
        if (TaskState. isFinished(state )) {
          executorDataMap.get (executorId ) match {
            case Some (executorInfo ) =>
              executorInfo.freeCores += scheduler.CPUS_PER_TASK
              makeOffers(executorId )
            case None =>
              // Ignoring the update since we don't know about the executor.
              logWarning(s"Ignored task status update ($taskId state $state) " +
                s "from unknown executor with ID $executorId" )
          }
        }

// TaskScheduler
  def statusUpdate( tid: Long, state: TaskState, serializedData: ByteBuffer) {
    var failedExecutor: Option[ String] = None
    var reason: Option[ExecutorLossReason] = None
    synchronized {
      try {
        taskIdToTaskSetManager.get (tid ) match {
          case Some (taskSet ) =>
            //实际编写Spark应用时可能经常发现Task lost,因为各种各样的原因执行失败
            if (state == TaskState.LOST) {
              // TaskState.LOST is only used by the deprecated Mesos fine-grained scheduling mode,
              // where each executor corresponds to a single task, so mark the executor as failed.
              val execId = taskIdToExecutorId .getOrElse (tid , throw new IllegalStateException(
                "taskIdToTaskSetManager.contains(tid) <=> taskIdToExecutorId.contains(tid)"))
              if (executorIdToRunningTaskIds .contains (execId )) {
                reason = Some(
                  SlaveLost(s"Task $ tid was lost, so marking the executor as lost as well."))
                removeExecutor(execId , reason .get )
                failedExecutor = Some (execId )
              }
            }
            // 如果Task完成,从内存缓存中移除
            if (TaskState. isFinished(state )) {
              cleanupTaskState(tid )
              taskSet. removeRunningTask(tid )
            // 相应处理
              if (state == TaskState.FINISHED) {
                taskResultGetter.enqueueSuccessfulTask (taskSet , tid , serializedData)
              } else if (Set(TaskState. FAILED, TaskState.KILLED, TaskState.LOST).contains( state)) {
                taskResultGetter.enqueueFailedTask (taskSet , tid , state , serializedData)
              }
            }
          case None =>
            logError(
              ( "Ignoring update with state %s for TID %s because its task set is gone (this is " +
                "likely the result of receiving duplicate task finished status updates) or its " +
                "executor has been marked as failed." )
                .format( state, tid))
        }
      } catch {
        case e : Exception => logError("Exception in statusUpdate" , e )
      }
    }
    // Update the DAGScheduler without holding a lock on this, since that can deadlock
    if (failedExecutor. isDefined) {
      assert(reason.isDefined)
      dagScheduler. executorLost(failedExecutor .get , reason .get )
      backend.reviveOffers()
    }
  }

你可能感兴趣的:(bigdata,spark)