JPEG解码

一、JPEG编码原理

1.原理框图

JPEG解码_第1张图片

2.各个步骤

【零偏置(Level offset)】

将无符号的数变为有符号的数,使得出现大数的概率减小

【DCT变换】

将时域上的转变为频域上的,低频的集中在左上角,高频的在右下角,这样大部分的数据基本在左上角

【量化】

低频数据多且人眼敏感,细量化,高频数据少不敏感,粗量化;同理,根据人眼对亮度敏感高于色度的原理,亮度细量化,色度粗量化;

【之字形扫描(Zig_zag scan)】:使非零的数集中在前面,后面的连0用EOB表示

【编码】

DC 系数编码: 由于直流系数 F(0,0)反映了该子图像中包含的直流成分,通常较大,又由 于两个相邻的子图像的直流系数通常具有较大的相关性,所以对 DC 系数采用 差值脉冲编码(DPCM),即对本像素块直流系数与前一像素块直流系数的差 值进行无损编码。

  AC 系数编码: 首先,进行游程编码(RLC),并在最后加上块结束码(EOB);然后,系 数序列分组,将非零系数和它前面的相邻的全部零系数分在一组内;每组用两 个符号表示[(Run,Size),(Amplitude)] Amplitude:表示非零系数的幅度值;Run:表示零的游程即零的个数;Size: 表示非零系数的幅度值的编码位数

二、JPEG解码原理

1.主要流程

JPEG解码_第2张图片

2.文件格式

2.1

Segment 的组织形式 JPEG 在文件中以 Segment 的形式组织,它具有以下特点:

(1)均以 0xFF 开始,后跟 1 byte 的 Marker 和 2 byte 的 Segment length(包含表示 Length 本身所占用的 2 byte,不含“0xFF” + “Marker” 所占用的 2 byte);

(2)采用 Motorola 序(相对于 Intel 序),即保存时高位在前,低位在后; 

(3)Data 部分中,0xFF 后若为 0x00,则跳过此字节不予处理

2.2JPEG的Segment Marker

JPEG解码_第3张图片

JPEG解码_第4张图片

JPEG解码_第5张图片

三、代码分析

3.1

主函数里面,通过benchmark_mode看是单个图像转换还是多次转换

JPEG解码_第6张图片

3.2

tinyjpeg_parse_header解析头函数

int tinyjpeg_parse_header(struct jdec_private *priv, const unsigned char *buf, unsigned int size)
{
  int ret;

  /* Identify the file */
  if ((buf[0] != 0xFF) || (buf[1] != SOI))//segment marker文件开始一定是0XFF
    snprintf(error_string, sizeof(error_string),"Not a JPG file ?\n");

  priv->stream_begin = buf+2;
  priv->stream_length = size-2;
  priv->stream_end = priv->stream_begin + priv->stream_length;

  ret = parse_JFIF(priv, priv->stream_begin);//解析JFIF

  return ret;
}

在parse_JFIF中依次解析了各个标志

static int parse_JFIF(struct jdec_private *priv, const unsigned char *stream)
{
  int chuck_len;
  int marker;
  int sos_marker_found = 0;
  int dht_marker_found = 0;
  const unsigned char *next_chunck;

  /* Parse marker */
  while (!sos_marker_found)
   {
     if (*stream++ != 0xff)
       goto bogus_jpeg_format;
     /* Skip any padding ff byte (this is normal) */
     while (*stream == 0xff)
       stream++;

     marker = *stream++;
     chuck_len = be16_to_cpu(stream);
     next_chunck = stream + chuck_len;
     switch (marker)
      {
       case SOF:
	 if (parse_SOF(priv, stream) < 0)
	   return -1;
	 break;
       case DQT:
	 if (parse_DQT(priv, stream) < 0)
	   return -1;
	 break;
       case SOS:
	 if (parse_SOS(priv, stream) < 0)
	   return -1;
	 sos_marker_found = 1;
	 break;
       case DHT:
	 if (parse_DHT(priv, stream) < 0)
	   return -1;
	 dht_marker_found = 1;
	 break;
       case DRI:
	 if (parse_DRI(priv, stream) < 0)
	   return -1;
	 break;
       default:
        .......
}

3.3tinyjpeg_decode解码中

依据每个分量的水平、垂直采样因子计算 MCU 的大小,并得到每个 MCU 中 8*8 宏块的个数 

int tinyjpeg_decode(struct jdec_private *priv, int pixfmt)
{
  ...
  xstride_by_mcu = ystride_by_mcu = 8;
  if ((priv->component_infos[cY].Hfactor | priv->component_infos[cY].Vfactor) == 1) {
     decode_MCU = decode_mcu_table[0];
     convert_to_pixfmt = colorspace_array_conv[0];
#if TRACE
     fprintf(p_trace,"Use decode 1x1 sampling\n");
	 fflush(p_trace);
#endif
  } else if (priv->component_infos[cY].Hfactor == 1) {
     decode_MCU = decode_mcu_table[1];
     convert_to_pixfmt = colorspace_array_conv[1];
     ystride_by_mcu = 16;
#if TRACE
     fprintf(p_trace,"Use decode 1x2 sampling (not supported)\n");
	 fflush(p_trace);
#endif
  } else if (priv->component_infos[cY].Vfactor == 2) {
     decode_MCU = decode_mcu_table[3];
     convert_to_pixfmt = colorspace_array_conv[3];
     xstride_by_mcu = 16;
     ystride_by_mcu = 16;
#if TRACE 
	 fprintf(p_trace,"Use decode 2x2 sampling\n");
	 fflush(p_trace);
#endif
  } else {
     decode_MCU = decode_mcu_table[2];
     convert_to_pixfmt = colorspace_array_conv[2];
     xstride_by_mcu = 16;
#if TRACE
     fprintf(p_trace,"Use decode 2x1 sampling\n");
	 fflush(p_trace);
#endif
  }


3.4 

对每个 MCU 解码(依照各分量水平、垂直采样因子对 MCU 中每个分量宏块解 码) 

.对每个宏块进行 Huffman 解码,得到 DCT 系数 

. 对每个宏块的 DCT 系数进行 IDCT,得到 Y、Cb、Cr 

. 遇到 Segment Marker RST 时,清空之前的 DC DCT 系数 

static void decode_MCU_1x1_3planes(struct jdec_private *priv)
{
  // Y
  process_Huffman_data_unit(priv, cY); 
  IDCT(&priv->component_infos[cY], priv->Y, 8);
  
  // Cb
  process_Huffman_data_unit(priv, cCb);
  IDCT(&priv->component_infos[cCb], priv->Cb, 8);

  // Cr
  process_Huffman_data_unit(priv, cCr);
  IDCT(&priv->component_infos[cCr], priv->Cr, 8);
}

/*
 * Decode a 1x1 directly in 1 color
 */
static void decode_MCU_1x1_1plane(struct jdec_private *priv)
{
  // Y
  process_Huffman_data_unit(priv, cY);
  IDCT(&priv->component_infos[cY], priv->Y, 8);
  
  // Cb
  process_Huffman_data_unit(priv, cCb);
  IDCT(&priv->component_infos[cCb], priv->Cb, 8);

  // Cr
  process_Huffman_data_unit(priv, cCr);
  IDCT(&priv->component_infos[cCr], priv->Cr, 8);
}


/*
 * Decode a 2x1
 *  .-------.
 *  | 1 | 2 |
 *  `-------'
 */
static void decode_MCU_2x1_3planes(struct jdec_private *priv)
{
  // Y
  process_Huffman_data_unit(priv, cY);
  IDCT(&priv->component_infos[cY], priv->Y, 16);
  process_Huffman_data_unit(priv, cY);
  IDCT(&priv->component_infos[cY], priv->Y+8, 16);

  // Cb
  process_Huffman_data_unit(priv, cCb);
  IDCT(&priv->component_infos[cCb], priv->Cb, 8);

  // Cr
  process_Huffman_data_unit(priv, cCr);
  IDCT(&priv->component_infos[cCr], priv->Cr, 8);
}

/*
 * Decode a 2x1
 *  .-------.
 *  | 1 | 2 |
 *  `-------'
 */
static void decode_MCU_2x1_1plane(struct jdec_private *priv)
{
  // Y
  process_Huffman_data_unit(priv, cY);
  IDCT(&priv->component_infos[cY], priv->Y, 16);
  process_Huffman_data_unit(priv, cY);
  IDCT(&priv->component_infos[cY], priv->Y+8, 16);

  // Cb
  process_Huffman_data_unit(priv, cCb);

  // Cr
  process_Huffman_data_unit(priv, cCr);
}


/*
 * Decode a 2x2
 *  .-------.
 *  | 1 | 2 |
 *  |---+---|
 *  | 3 | 4 |
 *  `-------'
 */
static void decode_MCU_2x2_3planes(struct jdec_private *priv)
{
  // Y
  process_Huffman_data_unit(priv, cY);
  IDCT(&priv->component_infos[cY], priv->Y, 16);
  process_Huffman_data_unit(priv, cY);
  IDCT(&priv->component_infos[cY], priv->Y+8, 16);
  process_Huffman_data_unit(priv, cY);
  IDCT(&priv->component_infos[cY], priv->Y+64*2, 16);
  process_Huffman_data_unit(priv, cY);
  IDCT(&priv->component_infos[cY], priv->Y+64*2+8, 16);

  // Cb
  process_Huffman_data_unit(priv, cCb);
  IDCT(&priv->component_infos[cCb], priv->Cb, 8);

  // Cr
  process_Huffman_data_unit(priv, cCr);
  IDCT(&priv->component_infos[cCr], priv->Cr, 8);
}

/*
 * Decode a 2x2 directly in GREY format (8bits)
 *  .-------.
 *  | 1 | 2 |
 *  |---+---|
 *  | 3 | 4 |
 *  `-------'
 */
static void decode_MCU_2x2_1plane(struct jdec_private *priv)
{
  // Y
  process_Huffman_data_unit(priv, cY);
  IDCT(&priv->component_infos[cY], priv->Y, 16);
  process_Huffman_data_unit(priv, cY);
  IDCT(&priv->component_infos[cY], priv->Y+8, 16);
  process_Huffman_data_unit(priv, cY);
  IDCT(&priv->component_infos[cY], priv->Y+64*2, 16);
  process_Huffman_data_unit(priv, cY);
  IDCT(&priv->component_infos[cY], priv->Y+64*2+8, 16);

  // Cb
  process_Huffman_data_unit(priv, cCb);

  // Cr
  process_Huffman_data_unit(priv, cCr);
}

/*
 * Decode a 1x2 mcu
 *  .---.
 *  | 1 |
 *  |---|
 *  | 2 |
 *  `---'
 */
static void decode_MCU_1x2_3planes(struct jdec_private *priv)
{
  // Y
  process_Huffman_data_unit(priv, cY);
  IDCT(&priv->component_infos[cY], priv->Y, 8);
  process_Huffman_data_unit(priv, cY);
  IDCT(&priv->component_infos[cY], priv->Y+64, 8);

  // Cb
  process_Huffman_data_unit(priv, cCb);
  IDCT(&priv->component_infos[cCb], priv->Cb, 8);

  // Cr
  process_Huffman_data_unit(priv, cCr);
  IDCT(&priv->component_infos[cCr], priv->Cr, 8);
}

/*
 * Decode a 1x2 mcu
 *  .---.
 *  | 1 |
 *  |---|
 *  | 2 |
 *  `---'
 */
static void decode_MCU_1x2_1plane(struct jdec_private *priv)
{
  // Y
  process_Huffman_data_unit(priv, cY);
  IDCT(&priv->component_infos[cY], priv->Y, 8);
  process_Huffman_data_unit(priv, cY);
  IDCT(&priv->component_infos[cY], priv->Y+64, 8);

  // Cb
  process_Huffman_data_unit(priv, cCb);

  // Cr
  process_Huffman_data_unit(priv, cCr);
}

四、实验结果

4.1输出YUV文件

JPEG解码_第7张图片

JPEG解码_第8张图片

输出三个改为输出一个

JPEG解码_第9张图片

4.2TRACE

输出 DQT的表

JPEG解码_第10张图片

Huffman表

JPEG解码_第11张图片                   JPEG解码_第12张图片

JPEG解码_第13张图片                           JPEG解码_第14张图片

3.输出DC图像

JPEG解码_第15张图片              JPEG解码_第16张图片

4.输出DCT[25]

      JPEG解码_第17张图片                 JPEG解码_第18张图片

DCTC[0]图像       

      JPEG解码_第19张图片                   JPEG解码_第20张图片

DCT系数往后基本都为0,只有前几个非0

你可能感兴趣的:(JPEG解码)