一、JPEG编码原理
1.原理框图
2.各个步骤
【零偏置(Level offset)】
将无符号的数变为有符号的数,使得出现大数的概率减小
【DCT变换】
将时域上的转变为频域上的,低频的集中在左上角,高频的在右下角,这样大部分的数据基本在左上角
【量化】
低频数据多且人眼敏感,细量化,高频数据少不敏感,粗量化;同理,根据人眼对亮度敏感高于色度的原理,亮度细量化,色度粗量化;
【之字形扫描(Zig_zag scan)】:使非零的数集中在前面,后面的连0用EOB表示
【编码】
DC 系数编码: 由于直流系数 F(0,0)反映了该子图像中包含的直流成分,通常较大,又由 于两个相邻的子图像的直流系数通常具有较大的相关性,所以对 DC 系数采用 差值脉冲编码(DPCM),即对本像素块直流系数与前一像素块直流系数的差 值进行无损编码。
AC 系数编码: 首先,进行游程编码(RLC),并在最后加上块结束码(EOB);然后,系 数序列分组,将非零系数和它前面的相邻的全部零系数分在一组内;每组用两 个符号表示[(Run,Size),(Amplitude)] Amplitude:表示非零系数的幅度值;Run:表示零的游程即零的个数;Size: 表示非零系数的幅度值的编码位数
二、JPEG解码原理
1.主要流程
2.文件格式
2.1
Segment 的组织形式 JPEG 在文件中以 Segment 的形式组织,它具有以下特点:
(1)均以 0xFF 开始,后跟 1 byte 的 Marker 和 2 byte 的 Segment length(包含表示 Length 本身所占用的 2 byte,不含“0xFF” + “Marker” 所占用的 2 byte);
(2)采用 Motorola 序(相对于 Intel 序),即保存时高位在前,低位在后;
(3)Data 部分中,0xFF 后若为 0x00,则跳过此字节不予处理
2.2JPEG的Segment Marker
三、代码分析
3.1
主函数里面,通过benchmark_mode看是单个图像转换还是多次转换
3.2
tinyjpeg_parse_header解析头函数
int tinyjpeg_parse_header(struct jdec_private *priv, const unsigned char *buf, unsigned int size)
{
int ret;
/* Identify the file */
if ((buf[0] != 0xFF) || (buf[1] != SOI))//segment marker文件开始一定是0XFF
snprintf(error_string, sizeof(error_string),"Not a JPG file ?\n");
priv->stream_begin = buf+2;
priv->stream_length = size-2;
priv->stream_end = priv->stream_begin + priv->stream_length;
ret = parse_JFIF(priv, priv->stream_begin);//解析JFIF
return ret;
}
在parse_JFIF中依次解析了各个标志
static int parse_JFIF(struct jdec_private *priv, const unsigned char *stream)
{
int chuck_len;
int marker;
int sos_marker_found = 0;
int dht_marker_found = 0;
const unsigned char *next_chunck;
/* Parse marker */
while (!sos_marker_found)
{
if (*stream++ != 0xff)
goto bogus_jpeg_format;
/* Skip any padding ff byte (this is normal) */
while (*stream == 0xff)
stream++;
marker = *stream++;
chuck_len = be16_to_cpu(stream);
next_chunck = stream + chuck_len;
switch (marker)
{
case SOF:
if (parse_SOF(priv, stream) < 0)
return -1;
break;
case DQT:
if (parse_DQT(priv, stream) < 0)
return -1;
break;
case SOS:
if (parse_SOS(priv, stream) < 0)
return -1;
sos_marker_found = 1;
break;
case DHT:
if (parse_DHT(priv, stream) < 0)
return -1;
dht_marker_found = 1;
break;
case DRI:
if (parse_DRI(priv, stream) < 0)
return -1;
break;
default:
.......
}
3.3tinyjpeg_decode解码中
依据每个分量的水平、垂直采样因子计算 MCU 的大小,并得到每个 MCU 中 8*8 宏块的个数
int tinyjpeg_decode(struct jdec_private *priv, int pixfmt)
{
...
xstride_by_mcu = ystride_by_mcu = 8;
if ((priv->component_infos[cY].Hfactor | priv->component_infos[cY].Vfactor) == 1) {
decode_MCU = decode_mcu_table[0];
convert_to_pixfmt = colorspace_array_conv[0];
#if TRACE
fprintf(p_trace,"Use decode 1x1 sampling\n");
fflush(p_trace);
#endif
} else if (priv->component_infos[cY].Hfactor == 1) {
decode_MCU = decode_mcu_table[1];
convert_to_pixfmt = colorspace_array_conv[1];
ystride_by_mcu = 16;
#if TRACE
fprintf(p_trace,"Use decode 1x2 sampling (not supported)\n");
fflush(p_trace);
#endif
} else if (priv->component_infos[cY].Vfactor == 2) {
decode_MCU = decode_mcu_table[3];
convert_to_pixfmt = colorspace_array_conv[3];
xstride_by_mcu = 16;
ystride_by_mcu = 16;
#if TRACE
fprintf(p_trace,"Use decode 2x2 sampling\n");
fflush(p_trace);
#endif
} else {
decode_MCU = decode_mcu_table[2];
convert_to_pixfmt = colorspace_array_conv[2];
xstride_by_mcu = 16;
#if TRACE
fprintf(p_trace,"Use decode 2x1 sampling\n");
fflush(p_trace);
#endif
}
3.4
对每个 MCU 解码(依照各分量水平、垂直采样因子对 MCU 中每个分量宏块解 码)
.对每个宏块进行 Huffman 解码,得到 DCT 系数
. 对每个宏块的 DCT 系数进行 IDCT,得到 Y、Cb、Cr
. 遇到 Segment Marker RST 时,清空之前的 DC DCT 系数
static void decode_MCU_1x1_3planes(struct jdec_private *priv)
{
// Y
process_Huffman_data_unit(priv, cY);
IDCT(&priv->component_infos[cY], priv->Y, 8);
// Cb
process_Huffman_data_unit(priv, cCb);
IDCT(&priv->component_infos[cCb], priv->Cb, 8);
// Cr
process_Huffman_data_unit(priv, cCr);
IDCT(&priv->component_infos[cCr], priv->Cr, 8);
}
/*
* Decode a 1x1 directly in 1 color
*/
static void decode_MCU_1x1_1plane(struct jdec_private *priv)
{
// Y
process_Huffman_data_unit(priv, cY);
IDCT(&priv->component_infos[cY], priv->Y, 8);
// Cb
process_Huffman_data_unit(priv, cCb);
IDCT(&priv->component_infos[cCb], priv->Cb, 8);
// Cr
process_Huffman_data_unit(priv, cCr);
IDCT(&priv->component_infos[cCr], priv->Cr, 8);
}
/*
* Decode a 2x1
* .-------.
* | 1 | 2 |
* `-------'
*/
static void decode_MCU_2x1_3planes(struct jdec_private *priv)
{
// Y
process_Huffman_data_unit(priv, cY);
IDCT(&priv->component_infos[cY], priv->Y, 16);
process_Huffman_data_unit(priv, cY);
IDCT(&priv->component_infos[cY], priv->Y+8, 16);
// Cb
process_Huffman_data_unit(priv, cCb);
IDCT(&priv->component_infos[cCb], priv->Cb, 8);
// Cr
process_Huffman_data_unit(priv, cCr);
IDCT(&priv->component_infos[cCr], priv->Cr, 8);
}
/*
* Decode a 2x1
* .-------.
* | 1 | 2 |
* `-------'
*/
static void decode_MCU_2x1_1plane(struct jdec_private *priv)
{
// Y
process_Huffman_data_unit(priv, cY);
IDCT(&priv->component_infos[cY], priv->Y, 16);
process_Huffman_data_unit(priv, cY);
IDCT(&priv->component_infos[cY], priv->Y+8, 16);
// Cb
process_Huffman_data_unit(priv, cCb);
// Cr
process_Huffman_data_unit(priv, cCr);
}
/*
* Decode a 2x2
* .-------.
* | 1 | 2 |
* |---+---|
* | 3 | 4 |
* `-------'
*/
static void decode_MCU_2x2_3planes(struct jdec_private *priv)
{
// Y
process_Huffman_data_unit(priv, cY);
IDCT(&priv->component_infos[cY], priv->Y, 16);
process_Huffman_data_unit(priv, cY);
IDCT(&priv->component_infos[cY], priv->Y+8, 16);
process_Huffman_data_unit(priv, cY);
IDCT(&priv->component_infos[cY], priv->Y+64*2, 16);
process_Huffman_data_unit(priv, cY);
IDCT(&priv->component_infos[cY], priv->Y+64*2+8, 16);
// Cb
process_Huffman_data_unit(priv, cCb);
IDCT(&priv->component_infos[cCb], priv->Cb, 8);
// Cr
process_Huffman_data_unit(priv, cCr);
IDCT(&priv->component_infos[cCr], priv->Cr, 8);
}
/*
* Decode a 2x2 directly in GREY format (8bits)
* .-------.
* | 1 | 2 |
* |---+---|
* | 3 | 4 |
* `-------'
*/
static void decode_MCU_2x2_1plane(struct jdec_private *priv)
{
// Y
process_Huffman_data_unit(priv, cY);
IDCT(&priv->component_infos[cY], priv->Y, 16);
process_Huffman_data_unit(priv, cY);
IDCT(&priv->component_infos[cY], priv->Y+8, 16);
process_Huffman_data_unit(priv, cY);
IDCT(&priv->component_infos[cY], priv->Y+64*2, 16);
process_Huffman_data_unit(priv, cY);
IDCT(&priv->component_infos[cY], priv->Y+64*2+8, 16);
// Cb
process_Huffman_data_unit(priv, cCb);
// Cr
process_Huffman_data_unit(priv, cCr);
}
/*
* Decode a 1x2 mcu
* .---.
* | 1 |
* |---|
* | 2 |
* `---'
*/
static void decode_MCU_1x2_3planes(struct jdec_private *priv)
{
// Y
process_Huffman_data_unit(priv, cY);
IDCT(&priv->component_infos[cY], priv->Y, 8);
process_Huffman_data_unit(priv, cY);
IDCT(&priv->component_infos[cY], priv->Y+64, 8);
// Cb
process_Huffman_data_unit(priv, cCb);
IDCT(&priv->component_infos[cCb], priv->Cb, 8);
// Cr
process_Huffman_data_unit(priv, cCr);
IDCT(&priv->component_infos[cCr], priv->Cr, 8);
}
/*
* Decode a 1x2 mcu
* .---.
* | 1 |
* |---|
* | 2 |
* `---'
*/
static void decode_MCU_1x2_1plane(struct jdec_private *priv)
{
// Y
process_Huffman_data_unit(priv, cY);
IDCT(&priv->component_infos[cY], priv->Y, 8);
process_Huffman_data_unit(priv, cY);
IDCT(&priv->component_infos[cY], priv->Y+64, 8);
// Cb
process_Huffman_data_unit(priv, cCb);
// Cr
process_Huffman_data_unit(priv, cCr);
}
四、实验结果
4.1输出YUV文件
输出三个改为输出一个
4.2TRACE
输出 DQT的表
Huffman表
3.输出DC图像
4.输出DCT[25]
DCTC[0]图像
DCT系数往后基本都为0,只有前几个非0