一文读懂DS证据理论用法(详细公式步骤版)

做数据融合的时候,有没有无所适从,不知道用哪个理论?
今天就给大家介绍这款好用的DS理论,也叫D-S证据理论。

文章目录

  • 一、 基本概念
  • 二、 DS证据理论的用途
  • 三、D-S理论的实践方法
    • (一)先了解方法中的7个基本概念
      • 1.X 全域(Universe)/识别框架/假设空间
      • 2.基本概率
      • 3.基本概率分配(Basic Probability Assignment,BPA)
      • 4.基本概率分配函数---mass函数
      • 5.信度函数---Bel函数
      • 6.似然函数--Pl
      • 7.信任区间
    • (二)开始证据合成---使用Dempster合成规则
      • 1.Dempster合成规则也称证据合成公式
      • 2.实例解析

一、 基本概念

全名:DS 证据理论(Dempster-Shafer envidence theory)也称为DS理论。是一种处理不确定性问题的完整理论。

主要作用:Dempster合成规则——将多个主体(可以是不同的人的预测、不同的传感器的数据、不同的分类器的输出结果等等)相融合

二、 DS证据理论的用途

举例:发生抢劫案,警方判定罪犯肯定是嫌疑人A、B、C中的一个,但不知道是哪一个。两个证人张三、李四只是看到了部分过程,有不同的判断,用概率表示。共三种情况:A作案,B作案,C是作案,具体如下:

假设 张三认为 李四认为
A作案 0.86 0.02
B作案 0.13 0.90
C作案 0.01 0.08

DS理论用途:根据不同证人提供的概率,给出每种假设的综合概率。起到了不同数据源数据融合的作用。

比如通过DS理论综合得出结果如下(则A的嫌疑更大):

假设 综合概率
A作案 0.61
B作案 0.32
C作案 0.07

那么如何实现?

三、D-S理论的实践方法

(一)先了解方法中的7个基本概念

1.X 全域(Universe)/识别框架/假设空间

对于X 全域,指的是一共可以有多少种假设, 表示就是我们要判断事件发生情况的范围,对于我们的例子:A和B都没有作案,A作案,B是作案,A和B共同作案这四种情况。

2.基本概率

比如张三给出的“罪犯是A”的概率就是一个基本概率。同一个证人对X全域中不同情况的基本概率之和为1;

3.基本概率分配(Basic Probability Assignment,BPA)

指的是计算每一个证人对X全域中每一种情况的基本概率的过程。

4.基本概率分配函数—mass函数

基本概率分配的函数过程中用的函数,称为mass函数。记为:m(x)。

在我们上面的例子中,张三和李四两个证人(数据源)输入,所有有两个mass函数:

张三的m1和李四的m2,比如m1(A作案)=0.86

可以看出,m(x)满足如下两种情况:
一文读懂DS证据理论用法(详细公式步骤版)_第1张图片
若m(A)>0,A叫做焦元
在这里插入图片描述

5.信度函数—Bel函数

某个假设的信度函数指的是该假设所有的子集概率之和:
在这里插入图片描述

6.似然函数–Pl

某假设的似然函数指的是与该假设交集不为空的概率之和
一文读懂DS证据理论用法(详细公式步骤版)_第2张图片

7.信任区间

就是一个概率的线段:[a,b]
比如对于假设A,由信任函数与似然函数组成的闭区间[Bel(A),Pl(A)]则为假设 A 的信任区间,表示对假设 A 的确认程度。

(二)开始证据合成—使用Dempster合成规则

1.Dempster合成规则也称证据合成公式

一文读懂DS证据理论用法(详细公式步骤版)_第3张图片
对于假设A,合成的mass函数就是,所有相交有A的就两个假设进行两个mass函数计算后乘积的和,再除以归一化系数K。K的算法如下:
在这里插入图片描述
也就是1减去:所有相交为空的两个假设的mass函数计算后乘积的和。

还有一些地方将K定义如下,将1-K当成归一化系数,说法不同,含义一样。
在这里插入图片描述

2.实例解析

以刚才的那个例子为实例进行解析:

(1)先求归一化系数K

在这里插入图片描述
=m1(A)m2(A)+m1(B)m2(B)+m1(C )m2(C )

=0.86X0.02+0.13X0.9+0.01X0.08

=0.0172+0.117+0.0008

=0.135

在这里我们可以思考一个极端情况,当张三和李四的看法高度不一致的时候,K趋近与零。公式将无法使用,这也是经典版D-S理论的问题,所有后续有一些列论文对它在这一点上进行了改进。

(2)利用Dempster合成规则计算

在这里插入图片描述
=1/K x m1(A)m2(A)

=0.86X0.02/0.135

=0.12740741

同理计算:
m12(B)=0.13X0.9/0.135=0.866666
m12©=0.0.1x0.08/0.135=0.00592593

则我们的例子,用D-S融合的最终结果如下,B作案的可能性很大达到0.86666

假设 张三认为 李四认为 DS融合
A作案 0.86 0.02 0.12740741
B作案 0.13 0.90 0.866666
C作案 0.01 0.08 0.00592593

以上已经对D-S理论有了一个基本的了解。

若要进一步深入,点击看下面浙大教授的课件
https://wenku.baidu.com/view/8da2a02d011ca300a6c390d3.html

你可能感兴趣的:(人工智能算法模型,算法,人工智能)