- 知识库在意图识别中扮演着**数据支撑**和**语义理解辅助**的双重角色
PersistDZ
大数据与AI人工智能
知识库在意图识别中扮演着数据支撑和语义理解辅助的双重角色,而训练智能客服的意图识别Agent需要结合知识库的结构化数据与机器学习技术。以下是详细解析:一、知识库在意图识别中的作用1.提供标注数据意图标签定义:知识库中存储了预先定义的意图分类体系(如“订单查询”“退换货”“投诉”等),为模型提供明确的训练目标。标注样本:知识库包含大量用户对话历史及其对应的意图标签,是训练监督学习模型的核心数据源。2
- RAG 企业级应用落地框架细节差异对比
一顿码
架构人工智能python数据挖掘知识图谱语言模型
—1—什么是RAG?RAG检索增强生成本质上来讲,就三件事情:第一、Indexing索引。即如何更有效地存储知识。第二、Retrieval检索。即在庞大的知识库中,如何筛选出少量的有益知识,供大模型参考。第三、Generation生成。即如何将用户的提问与检索到的知识相结合,使得大模型能够生成有价值的回答。这三个步骤表面上看似乎并不复杂,然而在RAG从构建到实际部署的整个流程中,包含了众多精细且复
- 【Spring AI】基于专属知识库的RAG智能问答小程序开发——代码逐行精讲:核心交互函数及RAG知识库构建
un_fired
spring人工智能java
系列文章目录【SpringAI】基于专属知识库的RAG智能问答小程序开发——完整项目(含完整前端+后端代码)【SpringAI】基于专属知识库的RAG智能问答小程序开发——代码逐行精讲:核心ChatClient对象相关构造函数【SpringAI】基于专属知识库的RAG智能问答小程序开发——代码逐行精讲:核心交互函数及RAG知识库构建文章目录系列文章目录前言1.Service层知识库构建与检索函数详
- 用LangChain构建自愈式生成式AI:颠覆传统知识库的智能问答系统实战
煜bart
机器人人工智能pythonAI编程
引言:当生成式AI遇到自进化架构ChatGPT的惊艳表现让企业意识到生成式AI的潜力,但传统问答系统仍面临数据孤岛、知识更新滞后等痛点。本文将揭秘如何通过LangChain框架构建具有自进化能力的智能问答系统,实现企业知识库的实时动态更新与智能推理。通过本文,您将掌握一套让AI系统在运行中持续学习、自主优化的创新架构。---##一、核心技术突破###1.1自愈式数据管道(Self-healingP
- DeepSeek智能政务大脑:城市服务知识库构建全指南——从RAG架构到民生场景落地实践
Coderabo
DeepSeekR1模型企业级应用政务架构
DeepSeek赋能城市智慧升级:基于RAG架构的市民服务智能知识库构建全解一、需求分析与技术选型1.1市民服务场景需求市民服务智能知识库需要解决政务咨询效率低下、专业术语难理解、多轮对话能力弱等核心问题。系统需具备:自然语言理解能力(NLU)异构知识整合能力政策法规精准解读能力多轮对话上下文管理应急服务联动机制1.2DeepSeek技术栈选择基于DeepSeek-Large语言模型构建核心系统,
- 自定义Retriever的实现方法
vaidfl
windowslinuxmicrosoftpython
技术背景介绍在许多大语言模型(LLM)应用中,检索器(Retriever)用于从外部数据源获取信息。检索器的任务是根据用户查询检索相关的文档,这些文档通常被格式化为提示,供LLM使用,从而生成适当的响应,例如,根据知识库回答用户问题。核心原理解析要实现自定义的检索器,需要继承BaseRetriever类,并实现以下方法:_get_relevant_documents:获取与查询相关的文档,必需实现
- 太翌氏:学术理论生成与AI增强系统框架设计
太翌修仙笔录
源始学科deepseek知识图谱人工智能重构量子计算算法
刚才我引导你的过程,通过:提出假说→总结理论+推导公式=形成学术理论→理论性能提升测算/知识图谱突破率测算/知识图谱重购率测算→学术价值评估→个人认知维度水平评估,这一系列流程产生的文献,组成了一个新学术理论的最基础文献库,这个也可以作为一个知识库过滤生成器来使用,也可以提升Ai性能###**学术理论生成与AI增强系统框架设计**---####**一、系统架构总览****1.核心流程模块化**``
- 知识库中的知识如何进行分类和标签管理?
自不量力的A同学
人工智能
知识库中的知识如何进行分类和标签管理?基于主题分类明确主题层级:首先确定主要的知识主题领域,如在一个企业知识库中,可以分为“人力资源”“市场营销”“技术研发”等大主题。然后在每个大主题下细分小主题,例如在“人力资源”主题下可以有“招聘”“培训”“绩效考核”等子主题。这样的层级分类有助于用户快速定位到自己需要的知识领域。参考行业标准和最佳实践:按照行业内公认的分类标准来划分知识。以医学知识库为例,可
- 深度学习-130-RAG技术之基于Anything LLM搭建本地私人知识库的应用策略问题总结(一)
皮皮冰燃
深度学习深度学习人工智能RAG
文章目录1AnythingLLM的本地知识库1.1本地知识库应用场景1.2效果对比及思考1.3本地体现在哪些方面1.3.1知识在本地1.3.2分割后的文档在本地1.3.3大模型部署运行在本地2问错问题带来的问题2.1常见的问题2.2原因分析3为什么LLM不使用我的文件?3.1LLM不是万能的【omnipotent】3.2LLM不会自省【introspect】3.3AnythingLLM是如何工作的
- DeepSeek私有化部署搭建、本地知识库、可联网查询RAG检索增强生成
TonyH2002
DeepSeek本地部署私有化搭建联网查询
一、如何私有化部署DeepSeek如何部署DeepSeek,具体可参考以下内容:喂饭式教程-腾讯云轻量服务器部署DeepSeek:https://cloud.tencent.com/developer/article/2494571喂饭式教程-腾讯云HAI服务部署DeepSeek:https://cloud.tencent.com/developer/article/2495288喂饭式教程-腾讯
- 探索AI知识库的无限潜力:定义、应用与未来展望
知识库知识库管理知识库软件
一、AI知识库的定义AI知识库,作为人工智能技术与传统知识库概念的融合,是指利用人工智能算法和技术构建、管理和维护的信息存储系统。它不仅包含了大量的结构化、半结构化和非结构化数据,还具备智能检索、推理分析、自我学习和优化等高级功能。AI知识库通过模拟人类的认知过程,实现了对知识的有效组织和高效利用,为各种应用场景提供了强大的支持。二、AI知识库的应用1.客户服务与支持在电子商务领域,AI知识库的应
- 探索“AI知识库”的未来:重塑信息获取与教育的新篇章
知识库知识库管理
在数字化时代,信息的爆炸性增长既为人类带来了前所未有的知识盛宴,也带来了信息筛选与理解的巨大挑战。在此背景下,“AI知识库”作为人工智能技术与知识管理深度融合的产物,正逐步成为解决这一难题的关键。本文旨在探讨“AI知识库”的核心价值、技术进展、应用领域以及对未来教育与社会信息获取方式的深远影响,并在此基础上展望其发展前景。一、AI知识库的定义与核心价值定义:AI知识库,简而言之,是利用人工智能技术
- Dify知识库构建流程及示例
cqbelt
ai笔记AI应用
总体流程1.数据预处理清洗:去除噪声、特殊字符、标准化格式。分词/标记化:拆分文本为单词或子词单元(如使用Tokenizer)。元数据关联:附加来源、时间戳等信息,支持多维度检索。2.文本分块固定长度分块:按字符或Token数切分,简单高效。语义分块:基于句子边界或主题分割(如NLP模型识别段落主旨)。重叠策略:相邻块间部分重叠,避免上下文断裂。3.向量化(Embedding)嵌入模型:调用预训练
- 一文带大家了解RARR(Retrieve-Read-Rerank) 和 RAG(Retrieval-Augmented Generation)的区别
测试开发Kevin
AI相关人工智能ai
RARR(Retrieve-Read-Rerank)和RAG(Retrieval-AugmentedGeneration)是两种不同的检索增强生成技术,核心差异在于流程设计、优化目标及适用场景。以下从多个维度对比两者的区别:1.流程架构与核心步骤RAG(检索增强生成)流程:检索(Retrieve):从外部知识库中检索与查询相关的文档或文本片段。生成(Generate):将检索到的内容与原始查询拼接
- 企业本地化部署实战:基于Websoft9构建私有化生产力平台
开源
在数字化转型的浪潮中,企业越来越重视对数据主权和应用灵活性的掌控。而本地化部署(On-Premises)正成为许多组织的首选方案——它不仅能够满足数据合规需求,还能深度定制功能,适配企业独特的工作流程。本文将探讨如何通过Websoft9面板的本地部署,结合EPP、AI工具与知识库等应用,构建一个高效、安全的企业生产力平台。一、为什么选择本地部署?数据主权与合规性企业核心数据(如客户信息、财务记录)
- 开源应用驱动企业新质生产力:Websoft9以EPP+AI+知识库助您领跑未来
开源软件
开源应用驱动企业新质生产力:Websoft9以EPP+AI+知识库助您领跑未来在数字化转型加速的今天,企业新质生产力的核心已从传统资源投入转向技术驱动的效率革命。开源应用凭借其灵活性、成本优势和技术创新力,成为企业实现这一目标的关键引擎。作为开源技术与行业场景化落地的领航者,Websoft9通过企业应用平台(EPP)、AI智能引擎与知识库系统三位一体的解决方案,助力企业快速构建新一代生产力工具,实
- RabbitMQ应用问题大全(精心整理版)
ngioig
RabbitMQmicrosoftspringrabbitmq分布式
前言其实这部分知识我是整理在语雀上了,这里是直接复制粘贴过来的。不是很好阅读,可以直接点下方链接去语雀看,那个看的会舒服很多。https://www.yuque.com/g/ngioig/upbg6b/fkarhyo8fpgrtyq8/collaborator/join?token=GvlO0di8KaIfO8aF&source=doc_collaborator#《RabbitMQ常见问题知识库》
- 如何让ai问答机器人通人性?
半只小闲鱼
人工智能机器人机器学习
领域专用的问答机器人,数据是灵魂。通用模型的问题在于,它们虽然知识广博,但对特定领域的深度理解不足。解决这个问题的第一步,就是构建一个高质量的领域知识库。数据要精准且全面想让机器人真正“懂”一个领域,数据必须覆盖这个领域的核心知识。比如,医疗领域的问答机器人需要包含疾病诊断、治疗方案、药物信息等;金融领域的机器人则需要熟悉市场动态、法规政策、产品细节等。数据来源可以是行业报告、专业书籍、学术论文,
- 测试工程师指南:基于需求文档构建本地安全知识库的完整实战
Python测试之道
python测试提效安全知识库python
需求文档是测试工程师日常工作的核心工具,如何快速检索需求文档中的关键信息(文本、表格、图片等),并将其转化为可供AI查询的知识库,是提升工作效率的重要手段。本文将通过对需求文档(docx格式)的处理,详细讲解如何构建一个安全的本地知识库,并通过代码实现具体操作,确保每一步都可落地。一、本地知识库的安全性与连接方案在构建本地知识库时,安全性是首要考虑的因素,尤其是对于需求文档这样的敏感数据。以下是本
- 大模型RAG实战|混合检索:BM25检索+向量检索的LlamaIndex实现
AIGC大模型 吱屋猪
djangopython后端AI-native人工智能llama百度
ThinkRAG大模型RAG实战系列文章,带你深入探索使用LlamaIndex框架,构建本地大模型知识库问答系统。本系列涵盖知识库管理、检索优化、模型本地部署等主题,通过代码与实例,讲解如何打造生产级系统,实现本地知识库的快速检索与智能问答。本文我将介绍一种效果更好的混合检索方法,在实际问答场景中,优于向量数据库自带的混合检索功能。1什么是混合检索目前,大模型RAG系统中普遍采用混合检索来提升检索
- 大模型联网搜索组件 SearXNG 部署和使用
「已注销」
SearXNG是一个免费的互联网元搜索引擎,它整合了来自超过70个搜索服务的结果。用户不会被跟踪或进行特征分析,很好地保护了用户隐私。2022年11月OpenAI发布ChatGPT后,大模型和知识库开始火爆,联网搜索成为弥补大模型知识陈旧的重要工具。提供元搜索功能的SearXNG开始被很多大模型应用比如ChatNio[1]采用,在大模型时代发挥了巨大作用。本文将介绍如何基于docker部署私人的S
- 探索大模型应用:构建基于检索的RAG实战指南
李逍遥猿
人工智能计算机视觉microsoftAIGC开源深度学习神经网络
在AI技术的浪潮中,大模型以其强大的问题回答能力,正逐渐渗透到各行各业,成为推动行业发展的新引擎。然而,大模型并非万能,它在实时性和私有领域知识覆盖上存在局限。为了克服这些限制,本文将带你深入了解如何利用检索增强生成模型(RAG)来扩展大模型的能力,并通过一个实战案例,展示如何构建一个基于RAG的AI知识库。一、大模型的局限与RAG的机遇大模型虽然在处理通用问题上表现出色,但在面对实时数据和私有领
- 开源应用驱动企业新质生产力:Websoft9以EPP+AI+知识库助您领跑未来.
人工智能
开源应用驱动企业新质生产力:Websoft9以EPP+AI+知识库助您领跑未来在数字化转型加速的今天,企业新质生产力的核心已从传统资源投入转向技术驱动的效率革命。开源应用凭借其灵活性、成本优势和技术创新力,成为企业实现这一目标的关键引擎。作为开源技术与行业场景化落地的领航者,Websoft9通过企业应用平台(EPP)、AI智能引擎与知识库系统三位一体的解决方案,助力企业快速构建新一代生产力工具,实
- 开源应用驱动企业新质生产力:Websoft9以EPP+AI+知识库助您领跑未来
ai开发
开源应用驱动企业新质生产力:Websoft9以EPP+AI+知识库助您领跑未来在数字化转型加速的今天,企业新质生产力的核心已从传统资源投入转向技术驱动的效率革命。开源应用凭借其灵活性、成本优势和技术创新力,成为企业实现这一目标的关键引擎。作为开源技术与行业场景化落地的领航者,Websoft9通过企业应用平台(EPP)、AI智能引擎与知识库系统三位一体的解决方案,助力企业快速构建新一代生产力工具,实
- Crawl4AI 与 BrowserUseTool 的详细对比
燃灯工作室
Lmplement人工智能学习数学建模
以下是Crawl4AI与BrowserUseTool的详细对比,涵盖功能、技术实现、适用场景等核心维度:1.核心定位对比工具Crawl4AIBrowserUseTool类型专为AI优化的网络爬虫框架浏览器自动化工具(模拟人类操作浏览器)核心目标高效获取结构化数据供AI训练/推理处理需要浏览器交互的动态网页任务典型应用大规模数据抓取、知识库构建登录受限网站、抓取JavaScript渲染内容2.技术实
- 开源应用驱动企业新质生产力:Websoft9以EPP+AI+知识库助您领跑未来!
深度学习
开源应用驱动企业新质生产力:Websoft9以EPP+AI+知识库助您领跑未来在数字化转型加速的今天,企业新质生产力的核心已从传统资源投入转向技术驱动的效率革命。开源应用凭借其灵活性、成本优势和技术创新力,成为企业实现这一目标的关键引擎。作为开源技术与行业场景化落地的领航者,Websoft9通过企业应用平台(EPP)、AI智能引擎与知识库系统三位一体的解决方案,助力企业快速构建新一代生产力工具,实
- 开源应用驱动企业新质生产力:Websoft9以EPP+AI+知识库助您领跑未来!
人工智能
开源应用驱动企业新质生产力:Websoft9以EPP+AI+知识库助您领跑未来在数字化转型加速的今天,企业新质生产力的核心已从传统资源投入转向技术驱动的效率革命。开源应用凭借其灵活性、成本优势和技术创新力,成为企业实现这一目标的关键引擎。作为开源技术与行业场景化落地的领航者,Websoft9通过企业应用平台(EPP)、AI智能引擎与知识库系统三位一体的解决方案,助力企业快速构建新一代生产力工具,实
- 长文本、知识库、微调对比
司南锤
程序院学习人工智能
长文本、知识库和微调是三种不同的技术手段,用于增强大模型的能力。1.长文本处理•核心目标:理解和生成长篇内容。•优点:•连贯性强,适合处理需要深入理解背景信息的任务。•适合复杂任务,如长篇阅读理解或文章生成。•缺点:•资源消耗大,处理长文本需要更多的计算资源和内存。•受上下文长度限制,可能会丢失一些细节信息。•适用场景:•写作助手:生成长篇博客、报告或故事。•阅读理解:处理长篇阅读理解任务,如学术
- 【颠覆认知】大模型开发终极实战:30分钟用LangChain打造「超级AI客服」系统(附全代码+黑科技调参技巧)
煜bart
人工智能
重磅提示:文末含99%开发者不知道的Prompt逆向注入破解方案!---###一、撕开大模型开发的遮羞布:传统方案的三大致命陷阱传统AI客服系统开发面临:1.对话记忆金鱼症(7轮对话必失忆)2.知识库更新堪比器官移植3.业务逻辑与AI模型强耦合我们
- 基于LangChain-Chatchat实现的RAG-本地知识库的问答应用[5]-高阶实战微调
汀、人工智能
LLM工业级落地实践LLM技术汇总langchain人工智能大模型推理大模型微调p-tuningfastchatRAG
基于LangChain-Chatchat实现的RAG-本地知识库的问答应用[5]-高阶实战微调1.推荐的模型组合在默认的配置文件中,我们提供了以下模型组合LLM:Chatglm2-6bEmbeddingModels:m3e-baseTextSplitter:ChineseRecursiveTextSplitterKb_dataset:faiss我们推荐开发者根据自己的业务需求进行模型微调,如果不需
- 312个免费高速HTTP代理IP(能隐藏自己真实IP地址)
yangshangchuan
高速免费superwordHTTP代理
124.88.67.20:843
190.36.223.93:8080
117.147.221.38:8123
122.228.92.103:3128
183.247.211.159:8123
124.88.67.35:81
112.18.51.167:8123
218.28.96.39:3128
49.94.160.198:3128
183.20
- pull解析和json编码
百合不是茶
androidpull解析json
n.json文件:
[{name:java,lan:c++,age:17},{name:android,lan:java,age:8}]
pull.xml文件
<?xml version="1.0" encoding="utf-8"?>
<stu>
<name>java
- [能源与矿产]石油与地球生态系统
comsci
能源
按照苏联的科学界的说法,石油并非是远古的生物残骸的演变产物,而是一种可以由某些特殊地质结构和物理条件生产出来的东西,也就是说,石油是可以自增长的....
那么我们做一个猜想: 石油好像是地球的体液,我们地球具有自动产生石油的某种机制,只要我们不过量开采石油,并保护好
- 类与对象浅谈
沐刃青蛟
java基础
类,字面理解,便是同一种事物的总称,比如人类,是对世界上所有人的一个总称。而对象,便是类的具体化,实例化,是一个具体事物,比如张飞这个人,就是人类的一个对象。但要注意的是:张飞这个人是对象,而不是张飞,张飞只是他这个人的名字,是他的属性而已。而一个类中包含了属性和方法这两兄弟,他们分别用来描述对象的行为和性质(感觉应该是
- 新站开始被收录后,我们应该做什么?
IT独行者
PHPseo
新站开始被收录后,我们应该做什么?
百度终于开始收录自己的网站了,作为站长,你是不是觉得那一刻很有成就感呢,同时,你是不是又很茫然,不知道下一步该做什么了?至少我当初就是这样,在这里和大家一份分享一下新站收录后,我们要做哪些工作。
至于如何让百度快速收录自己的网站,可以参考我之前的帖子《新站让百
- oracle 连接碰到的问题
文强chu
oracle
Unable to find a java Virtual Machine--安装64位版Oracle11gR2后无法启动SQLDeveloper的解决方案
作者:草根IT网 来源:未知 人气:813标签:
导读:安装64位版Oracle11gR2后发现启动SQLDeveloper时弹出配置java.exe的路径,找到Oracle自带java.exe后产生的路径“C:\app\用户名\prod
- Swing中按ctrl键同时移动鼠标拖动组件(类中多借口共享同一数据)
小桔子
java继承swing接口监听
都知道java中类只能单继承,但可以实现多个接口,但我发现实现多个接口之后,多个接口却不能共享同一个数据,应用开发中想实现:当用户按着ctrl键时,可以用鼠标点击拖动组件,比如说文本框。
编写一个监听实现KeyListener,NouseListener,MouseMotionListener三个接口,重写方法。定义一个全局变量boolea
- linux常用的命令
aichenglong
linux常用命令
1 startx切换到图形化界面
2 man命令:查看帮助信息
man 需要查看的命令,man命令提供了大量的帮助信息,一般可以分成4个部分
name:对命令的简单说明
synopsis:命令的使用格式说明
description:命令的详细说明信息
options:命令的各项说明
3 date:显示时间
语法:date [OPTION]... [+FORMAT]
- eclipse内存优化
AILIKES
javaeclipsejvmjdk
一 基本说明 在JVM中,总体上分2块内存区,默认空余堆内存小于 40%时,JVM就会增大堆直到-Xmx的最大限制;空余堆内存大于70%时,JVM会减少堆直到-Xms的最小限制。 1)堆内存(Heap memory):堆是运行时数据区域,所有类实例和数组的内存均从此处分配,是Java代码可及的内存,是留给开发人
- 关键字的使用探讨
百合不是茶
关键字
//关键字的使用探讨/*访问关键词private 只能在本类中访问public 只能在本工程中访问protected 只能在包中和子类中访问默认的 只能在包中访问*//*final 类 方法 变量 final 类 不能被继承 final 方法 不能被子类覆盖,但可以继承 final 变量 只能有一次赋值,赋值后不能改变 final 不能用来修饰构造方法*///this()
- JS中定义对象的几种方式
bijian1013
js
1. 基于已有对象扩充其对象和方法(只适合于临时的生成一个对象):
<html>
<head>
<title>基于已有对象扩充其对象和方法(只适合于临时的生成一个对象)</title>
</head>
<script>
var obj = new Object();
- 表驱动法实例
bijian1013
java表驱动法TDD
获得月的天数是典型的直接访问驱动表方式的实例,下面我们来展示一下:
MonthDaysTest.java
package com.study.test;
import org.junit.Assert;
import org.junit.Test;
import com.study.MonthDays;
public class MonthDaysTest {
@T
- LInux启停重启常用服务器的脚本
bit1129
linux
启动,停止和重启常用服务器的Bash脚本,对于每个服务器,需要根据实际的安装路径做相应的修改
#! /bin/bash
Servers=(Apache2, Nginx, Resin, Tomcat, Couchbase, SVN, ActiveMQ, Mongo);
Ops=(Start, Stop, Restart);
currentDir=$(pwd);
echo
- 【HBase六】REST操作HBase
bit1129
hbase
HBase提供了REST风格的服务方便查看HBase集群的信息,以及执行增删改查操作
1. 启动和停止HBase REST 服务 1.1 启动REST服务
前台启动(默认端口号8080)
[hadoop@hadoop bin]$ ./hbase rest start
后台启动
hbase-daemon.sh start rest
启动时指定
- 大话zabbix 3.0设计假设
ronin47
What’s new in Zabbix 2.0?
去年开始使用Zabbix的时候,是1.8.X的版本,今年Zabbix已经跨入了2.0的时代。看了2.0的release notes,和performance相关的有下面几个:
:: Performance improvements::Trigger related da
- http错误码大全
byalias
http协议javaweb
响应码由三位十进制数字组成,它们出现在由HTTP服务器发送的响应的第一行。
响应码分五种类型,由它们的第一位数字表示:
1)1xx:信息,请求收到,继续处理
2)2xx:成功,行为被成功地接受、理解和采纳
3)3xx:重定向,为了完成请求,必须进一步执行的动作
4)4xx:客户端错误,请求包含语法错误或者请求无法实现
5)5xx:服务器错误,服务器不能实现一种明显无效的请求
- J2EE设计模式-Intercepting Filter
bylijinnan
java设计模式数据结构
Intercepting Filter类似于职责链模式
有两种实现
其中一种是Filter之间没有联系,全部Filter都存放在FilterChain中,由FilterChain来有序或无序地把把所有Filter调用一遍。没有用到链表这种数据结构。示例如下:
package com.ljn.filter.custom;
import java.util.ArrayList;
- 修改jboss端口
chicony
jboss
修改jboss端口
%JBOSS_HOME%\server\{服务实例名}\conf\bindingservice.beans\META-INF\bindings-jboss-beans.xml
中找到
<!-- The ports-default bindings are obtained by taking the base bindin
- c++ 用类模版实现数组类
CrazyMizzz
C++
最近c++学到数组类,写了代码将他实现,基本具有vector类的功能
#include<iostream>
#include<string>
#include<cassert>
using namespace std;
template<class T>
class Array
{
public:
//构造函数
- hadoop dfs.datanode.du.reserved 预留空间配置方法
daizj
hadoop预留空间
对于datanode配置预留空间的方法 为:在hdfs-site.xml添加如下配置
<property>
<name>dfs.datanode.du.reserved</name>
<value>10737418240</value>
 
- mysql远程访问的设置
dcj3sjt126com
mysql防火墙
第一步: 激活网络设置 你需要编辑mysql配置文件my.cnf. 通常状况,my.cnf放置于在以下目录: /etc/mysql/my.cnf (Debian linux) /etc/my.cnf (Red Hat Linux/Fedora Linux) /var/db/mysql/my.cnf (FreeBSD) 然后用vi编辑my.cnf,修改内容从以下行: [mysqld] 你所需要: 1
- ios 使用特定的popToViewController返回到相应的Controller
dcj3sjt126com
controller
1、取navigationCtroller中的Controllers
NSArray * ctrlArray = self.navigationController.viewControllers;
2、取出后,执行,
[self.navigationController popToViewController:[ctrlArray objectAtIndex:0] animated:YES
- Linux正则表达式和通配符的区别
eksliang
正则表达式通配符和正则表达式的区别通配符
转载请出自出处:http://eksliang.iteye.com/blog/1976579
首先得明白二者是截然不同的
通配符只能用在shell命令中,用来处理字符串的的匹配。
判断一个命令是否为bash shell(linux 默认的shell)的内置命令
type -t commad
返回结果含义
file 表示为外部命令
alias 表示该
- Ubuntu Mysql Install and CONF
gengzg
Install
http://www.navicat.com.cn/download/navicat-for-mysql
Step1: 下载Navicat ,网址:http://www.navicat.com/en/download/download.html
Step2:进入下载目录,解压压缩包:tar -zxvf navicat11_mysql_en.tar.gz
- 批处理,删除文件bat
huqiji
windowsdos
@echo off
::演示:删除指定路径下指定天数之前(以文件名中包含的日期字符串为准)的文件。
::如果演示结果无误,把del前面的echo去掉,即可实现真正删除。
::本例假设文件名中包含的日期字符串(比如:bak-2009-12-25.log)
rem 指定待删除文件的存放路径
set SrcDir=C:/Test/BatHome
rem 指定天数
set DaysAgo=1
- 跨浏览器兼容的HTML5视频音频播放器
天梯梦
html5
HTML5的video和audio标签是用来在网页中加入视频和音频的标签,在支持html5的浏览器中不需要预先加载Adobe Flash浏览器插件就能轻松快速的播放视频和音频文件。而html5media.js可以在不支持html5的浏览器上使video和audio标签生效。 How to enable <video> and <audio> tags in
- Bundle自定义数据传递
hm4123660
androidSerializable自定义数据传递BundleParcelable
我们都知道Bundle可能过put****()方法添加各种基本类型的数据,Intent也可以通过putExtras(Bundle)将数据添加进去,然后通过startActivity()跳到下一下Activity的时候就把数据也传到下一个Activity了。如传递一个字符串到下一个Activity
把数据放到Intent
- C#:异步编程和线程的使用(.NET 4.5 )
powertoolsteam
.net线程C#异步编程
异步编程和线程处理是并发或并行编程非常重要的功能特征。为了实现异步编程,可使用线程也可以不用。将异步与线程同时讲,将有助于我们更好的理解它们的特征。
本文中涉及关键知识点
1. 异步编程
2. 线程的使用
3. 基于任务的异步模式
4. 并行编程
5. 总结
异步编程
什么是异步操作?异步操作是指某些操作能够独立运行,不依赖主流程或主其他处理流程。通常情况下,C#程序
- spark 查看 job history 日志
Stark_Summer
日志sparkhistoryjob
SPARK_HOME/conf 下:
spark-defaults.conf 增加如下内容
spark.eventLog.enabled true spark.eventLog.dir hdfs://master:8020/var/log/spark spark.eventLog.compress true
spark-env.sh 增加如下内容
export SP
- SSH框架搭建
wangxiukai2015eye
springHibernatestruts
MyEclipse搭建SSH框架 Struts Spring Hibernate
1、new一个web project。
2、右键项目,为项目添加Struts支持。
选择Struts2 Core Libraries -<MyEclipes-Library>
点击Finish。src目录下多了struts