- 深度学习入门篇:PyTorch实现手写数字识别
AI_Guru人工智能
深度学习pytorch人工智能
深度学习作为机器学习的一个分支,近年来在图像识别、自然语言处理等领域取得了显著的成就。在众多的深度学习框架中,PyTorch以其动态计算图、易用性强和灵活度高等特点,受到了广泛的喜爱。本篇文章将带领大家使用PyTorch框架,实现一个手写数字识别的基础模型。手写数字识别简介手写数字识别是计算机视觉领域的一个经典问题,目的是让计算机能够识别并理解手写数字图像。这个问题通常作为深度学习入门的练习,因为
- 深度学习入门:使用 PyTorch 构建和训练你的第一个神经网络
Mr' 郑
深度学习pytorch神经网络
引言深度学习是机器学习的一个分支,它利用多层非线性处理单元(即神经网络)来解决复杂的模式识别问题。PyTorch是一个强大的深度学习框架,它提供了灵活的API和动态计算图,非常适合初学者和研究者使用。安装PyTorch确保安装了Python和pip。然后通过以下命令安装PyTorch:pipinstalltorchtorchvision导入库我们需要导入一些必要的库:importtorchimpo
- 02 使用 LSTM 进行时间序列预测
柒 魅。
时间序列预测lstm人工智能rnn
深度学习入门:使用LSTM进行时间序列预测引言深度学习在时间序列预测中展现出了强大的能力,尤其是长短期记忆(LSTM)网络。本文将为深度学习初学者介绍如何使用LSTM网络进行时间序列预测。我们将从基础知识讲起,提供代码示例,并解释每一步的技术细节。希望通过本文,大家能对LSTM有一个初步的了解,并能够在自己的项目中应用。1.什么是LSTM?LSTM(长短期记忆网络)是一种特殊的递归神经网络(RNN
- 【深度学习入门项目】一文带你弄清决策树(鸢尾花分类)
Better Rose
深度学习深度学习决策树分类
目录实验原理1.信息增益2.增益率3.基尼指数4.剪枝处理一、加载数据集二、配置模型三、训练模型四、模型预测五、模型评估六、决策树调参1.criterion2.max_depth实验原理决策树(decisiontree)是一种应用广泛的机器学习方法。顾名思义,决策树算法的表现形式可以直观理解为一棵树(可以是二叉树或非二叉树)。一棵决策树一般包含一个根节点、一系列内部节点和叶节点,一个叶节点对应一个
- 吴恩达深度学习-L1 神经网络和深度学习总结
向来痴_
深度学习人工智能
作业地址:吴恩达《深度学习》作业线上版-知乎(zhihu.com)写的很好的笔记:吴恩达《深度学习》笔记汇总-知乎(zhihu.com)我的「吴恩达深度学习笔记」汇总帖(附18个代码实战项目)-知乎(zhihu.com)此处只记录需要注意的点,若想看原笔记请移步。1.1深度学习入门我们只需要管理神经网络的输入和输出,而不用指定中间的特征,也不用理解它们究竟有没有实际意义。1.2简单的神经网络——逻
- 图像分割——基于pytorch的牙齿分割
苏俗
计算机视觉实战pytorch人工智能python
作为视觉基础任务的图像分割是大多数深度学习入门者的进一步学习,本文将用牙齿分割作为数据集,分享一下图像分割的训练内容。一、引入库importosimporttorchimporttorch.nnasnnfromPILimportImageimporttorch.optimasoptimimporttorch.nn.functionalasFfromtorchvisionimporttransfor
- 图像分类——基于pytorch的农作物病虫害检测
苏俗
计算机视觉实战分类pytorch数据挖掘
作为视觉基础任务的图像分类是大多数深度学习入门者的基础,本文将用包含33类的农作物病虫害数据集作为数据集,来过一遍图像分类任务的基本步骤。一、引入库importosimporttorchimportnumpyasnpfromPILimportImageimporttorch.nnasnnimporttorch.optimasoptimfromtorchvisionimportutilsfromco
- 人工智能深度学习入门指南
白猫a~
编程深度学习人工智能
随着人工智能(AI)技术的飞速发展,深度学习作为其重要分支,已经成为许多领域的研究热点。深度学习通过模拟人脑神经网络的运作方式,使得机器能够处理和分析海量的数据,从而实现更高级别的智能。本文将为你提供一份深度学习入门指南,帮助你快速掌握深度学习的基本知识和应用技能。1.了解深度学习基本概念在开始深度学习之前,你需要了解一些基本概念,如神经网络、激活函数、损失函数、反向传播等。这些概念是深度学习的基
- 深度学习入门--参数的优化算法
我只钓小鱼
深度学习
1.梯度下降法(GradientDescent)梯度下降法的计算过程就是沿梯度下降的方向求解极小值,也可以沿梯度上升方向求解最大值。假设模型参数为θ\thetaθ,损失函数为J(θ)J(\theta)J(θ),损失函数关于参数的偏导数,也就是梯度为▽θJ(θ)\triangledown_\thetaJ(\theta)▽θJ(θ),学习率为α\alphaα,则使用梯度下降法更新参数为:梯度下降法目前
- 第五届脑电深度学习入门班(训练营:2023.9.12~9.20)
茗创科技
茗创科技专注于脑科学数据处理,涵盖(EEG/ERP,fMRI,结构像,DTI,ASL,,FNIRS)等,欢迎留言讨论及转发推荐,也欢迎了解茗创科技的脑电课程,数据处理服务及脑科学工作站销售业务,可添加我们的工程师(微信号MCKJ-zhouyi或17373158786)咨询。★课程简介★脑电图(Electroencephalogram,EEG)是脑神经细胞电生理活动在大脑皮层或头皮表面的总体反映,包
- 深度学习入门笔记(九)自编码器
zhanghui_cuc
深度学习笔记深度学习笔记人工智能
自编码器是一个无监督的应用,它使用反向传播来更新参数,它最终的目标是让输出等于输入。数学上的表达为,f(x)=x,f为自编码器,x为输入数据。自编码器会先将输入数据压缩到一个较低维度的特征,然后利用这个较低维度的特征重现输入的数据,重现后的数据就是自编码器的输出。所以,从本质上来说,自编码器就是一个压缩算法。自编码器由3个部分组成:编码器(Encoder):用于数据压缩。压缩特征向量(Compre
- 深度学习入门笔记(八)可以不断思考的模型:RNN与LSTM
zhanghui_cuc
深度学习笔记深度学习rnn笔记
8.1循环神经网络RNN之前学到的CNN和全连接,模型的输入数据之间是没有关联的,比如图像分类,每次输入的图片与图片之间就没有任何关系,上一张图片的内容不会影响到下一张图片的结果。但在自然语言处理领域,这就成了一个短板。RNN因此出现,它是一类用于处理序列数据的神经网络。其基本单元结构如下自底向上的三个蓝色的节点分别是输入层、隐藏层和输出层。U和V分别是连接两个层的权重矩阵。如果不考虑右边的棕色环
- 第四届脑电深度学习入门班(训练营:2023.7.4~7.12)
茗创科技
茗创科技专注于脑科学数据处理,涵盖(EEG/ERP,fMRI,结构像,DTI,ASL,,FNIRS)等,欢迎留言讨论及转发推荐,也欢迎了解茗创科技的脑电课程,数据处理服务及脑科学工作站销售业务,可添加我们的工程师(微信号MCKJ-zhouyi或17373158786)咨询。★课程简介★脑电图(Electroencephalogram,EEG)是脑神经细胞电生理活动在大脑皮层或头皮表面的总体反映,包
- 深度学习与计算机视觉:实例入门-第六章
javastart
图象处理深度学习tensorflowopencv2
给深度学习入门者的Python快速教程-番外篇之Python-OpenCV《深度学习与计算机视觉》全书网址:https://frombeijingwithlove.github.io…本篇原网址:https://zhuanlan.zhihu.com/p/24425116本篇是前面两篇教程:给深度学习入门者的Python快速教程-基础篇给深度学习入门者的Python快速教程-numpy和Matplo
- 《深度学习入门:基于python的理论与实现》读书笔记
莫里衰
求梯度的函数:f是需要求梯度的函数,x是求梯度的点image.pngdefnumerical_gradient(f,x):h=1e-4#0.0001grad=np.zeros_like(x)#生成和x形状相同的数组foridxinrange(x.size):tmp_val=x[idx]#f(x+h)的计算x[idx]=tmp_val+hfxh1=f(x)#f(x-h)的计算x[idx]=tmp_v
- 深度学习入门笔记(五)前馈网络与反向传播
zhanghui_cuc
深度学习笔记深度学习笔记人工智能
接着上一节,本节讲解模型自我学习的数学计算过程究竟是怎么样的。5.1前馈网络一个最简单的前馈神经网络如图所示,对于每一个隐藏层,输入对应前一层每一个节点权重乘以节点输出值,输出则是经过激活函数(例如sigmoid函数)计算后的值。在这样的网络中,输入的数据x经过网络的各个节点之后,即可计算出最终的模型结果。这样就完成了一个最基本的前馈网络从输入到输出的计算过程。5.2反向传播在实际工作中这部分的内
- 深度学习入门(鱼书)
weixin_42963026
深度学习人工智能
学习笔记第3章神经网络3.1从感知机到神经网络3.1.1神经网络的例子图3-1中的网络一共由3层神经元构成,但实质上只有2层神经元有权重,因此将其称为“2层网络”。请注意,有的书也会根据构成网络的层数,把图3-1的网络称为“3层网络”。本书将根据实质上拥有权重的层数(输入层、隐藏层、输出层的总数减去1后的数量)来表示网络的名称。3.1.2复习感知机3.1.3激活函数登场刚才登场的h(x)函数会将输
- 深度学习入门笔记(1)——什么是深度学习?
ZRX_GIS
深度学习深度学习数据挖掘机器学习神经网络pytorch
深度学习入门笔记(1)——什么是深度学习?在很多人眼里,深度学习(DeepLearning)是一个十分高大上的研究手段,它可以模拟人的判断,让数据处理和结果输出具有“人性”,在没接触过的人看来,深度学习简直是“玄学”范畴,网络一通,谁都不爱。但是,在所有人追捧深度学习的同时,对学习这一手段却是望而却步,更有甚者在网上买完“韭菜课”后,原理部分还没看完就不在继续学习。其实,说句实话,深度学习只是被过
- (课程笔记)深度学习入门 - 1 - OverView
牛顿第八定律
深度学习入门笔记笔记深度学习人工智能
一、机器学习算法的过程与结果1、首先要得到标签化数据集(DataSet),既然是标签化,那应该是监督学习模式,而且此处的数据集应该分化为训练用集(TrainSet)和测试用集(TestSet),训练用集用于训练最终的算法模型,而测试用集用于测试训练的算法模型是否性能良好,是否能满足实际需求;2、设置并给出机器学习的算法模型(Model);3、设置期望的损失函数(LossFcn)和优化器(Optim
- 深度学习入门笔记(6)—— Logistic Regression
cnhwl
深度学习入门笔记深度学习机器学习逻辑回归人工智能python
对比第三节中的Adaline和LogisticRegression,可以发现它们只有两点不同:1、激活函数,Adaline中的激活函数是恒等函数(线性),而LogisticRegression中的激活函数是Sigmoid函数(非线性);2、损失函数,Adaline中的损失函数是均方误差,而LogisticRegression中的损失函数则是交叉熵。Sigmoid函数如图所示,其值域为0到1,输入为
- 《深度学习入门》学习笔记
YY_oot
机器学习深度学习python神经网络人工智能
原书:《深度学习入门:基于Python的理论与实现》文章目录前言第一章python入门列表字典类numpy广播第二章感知机第三章神经网络激活函数第四章神经网络的学习损失函数求梯度第五章误差反向传播法第六章与学习相关的技巧6.1寻找最优参数6.3权重的初始值6.4正则化6.4超参数的验证第七章卷积神经网络卷积池化CNN的可视化代表性的CNN第八章深度学习提高识别精度VGGGoogLeNetResNe
- 深度学习入门笔记(三)常用AI术语
zhanghui_cuc
深度学习笔记人工智能深度学习笔记
本节我们介绍一些深度学习领域常用的术语。训练确定模型中的参数的过程,我们就称为“训练”。Epoch遍历一遍训练数据就叫作“一个Epoch”。训练模型的时候,我们要告诉模型预计训练多少个Epoch,但这个值并不是固定的,因为并没有一个准确的Epoch数能一定能得到一个比较好的模型。我们有一个标准:模型训练的Epoch数必须要让模型达到一个收敛的状态。并且为了模型有更多的选择,我们可以让模型收敛后,再
- 深度学习入门笔记4 深度神经网络
深度学习从入门到放弃
深度学习笔记神经网络深度学习人工智能机器学习算法
多层感知器在之前的课程中,我们了解到,感知器(指单层感知器)具有一定的局限——无法解决异或问题,即线性不可分的问题。将多个单层感知器进行组合,就可以得到一个多层感知器(MLP——Multi-LayerPerceptron)结构。多层感知器包含输入层,一个或多个隐藏层以及一个输出层。每层的神经元与下一层进行完全连接。如果网络中包含一个以上的隐层,则称其为深度人工神经网络。说明:通常我们说的神经网络的
- 深度学习入门笔记:第二章感知机
维持好习惯
深度学习深度学习笔记人工智能
深度学习入门笔记:第二章感知机笔记来源书籍:《深度学习入门:基于+Python+的理论与实现》文章目录深度学习入门笔记:第二章感知机前言为什么学习感知机2.1感知机是什么2.2简单逻辑电路2.2.1与门2.2.2与非门和或门2.3感知机实现2.3.1简单的实现2.3.2导入权重和偏置2.3.3使用权重和偏置的实现2.4感知机的局限性2.4.1异或门2.4.2线性和非线性2.5多层感知机2.5.1已
- 深度学习入门学习笔记之——神经网络
前丨尘忆·梦
tensorflow深度学习神经网络深度学习
神经网络上一章我们学习了感知机。关于感知机,既有好消息,也有坏消息。好消息是,即便对于复杂的函数,感知机也隐含着能够表示它的可能性。上一章已经介绍过,即便是计算机进行的复杂处理,感知机(理论上)也可以将其表示出来。坏消息是,设定权重的工作,即确定合适的、能符合预期的输入与输出的权重,现在还是由人工进行的。上一章中,我们结合与门、或门的真值表人工决定了合适的权重。神经网络的出现就是为了解决刚才的坏消
- 深度学习入门笔记(二)神经元 激励函数 神经网络
花落雨微扬
神经网络网络深度学习人工智能机器学习
声明:本文内容源自《白话深度学习与tensorflow》高扬卫峥编著一书读书笔记!!!神经网络:神经网络又称为人工神经网络(artificialneutralnetwork,ANN)。神经网络是一种人类由于受到生物神经细胞结构启发而研究出的一种算法体系神经元:如上图所示是一个最简单的神经元,有一个输入,一个输出。我们现在所使用的神经元通常有两个部分组成,一个是“线性模型”,另一个是“激励函数”。假
- 2021-11-06《深度学习入门》笔记(二)
新手小嵩
深度学习系列笔记深度学习神经网络人工智能
第二章感知机感知机也是作为神经网络(深度学习)的起源的算法。因此,学习感知机的构造也就是学习通向神经网络和深度学习的一种重要思想。首先,感知机是什么?感知机接收多个输入信号,输出一个信号。上图是一个接收两个输入信号的感知机的例子。x1、x2是输入信号,y是输出信号,w1、w2是权重(w是weight的首字母)。图中的⚪称为“神经元”或者“节点”。输入信号被送往神经元时,会被分别乘以固定的权重(w1
- 深度学习入门笔记(二)神经元的结构
zhanghui_cuc
深度学习笔记深度学习笔记人工智能
神经网络的基本单元是神经元,本节我们介绍神经元的结构。2.1神经元一个神经元是由下面5部分组成的:输入:x1,x2,…,xk。权重:w1,w2,…,wk。权重的个数与神经元输入的个数相同。偏移项:可省略。激活函数:一般都会有,根据实际问题也是可以省略的。输出。2.2激活函数激活函数有很多种,不同的激活函数适用于不同的问题。二分类问题我们一般采用Sigmoid函数,多分类问题我们采用Softmax函
- 深度学习入门笔记(七)卷积神经网络CNN
zhanghui_cuc
深度学习笔记深度学习笔记cnn
我们先来总结一下人类识别物体的方法:定位。这一步对于人眼来说是一个很自然的过程,因为当你去识别图标的时候,你就已经把你的目光放在了图标上。虽然这个行为不是很难,但是很重要。看线条。有没有文字,形状是方的圆的,还是长的短的等等。看细节。纹理、颜色、方向等。卷积神经网络就是对上述过程的程序实现。7.1卷积卷积在卷积神经网络中的主要作用是提取图片的特征,同时保留原来图片中各个像素的相对位置(空间)关系。
- 深度学习入门笔记(八)实战经验
zhanghui_cuc
深度学习笔记深度学习笔记性能优化
前面几节介绍了很多理论,难免会好奇:理论如何与实战结合呢?本节我们就穿插一点实战经验,来换换脑子~1.显卡warmup进行深度学习训练和推理时,往往第一次运行的耗时比较高,这是因为显卡需要warm-up,就是“热身”,才能发挥出显卡的性能。关于热身,个人理解,显卡开始工作时控制单元需要对资源进行调度,例如分配warp等。这些应该都是在第一次推理的时候进行。类似的,举个栗子,在F1比赛中,每场赛车的
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,