本博客为完整转载,本书原文链接(https://ts.xcatliu.com/)
感谢原文作者 xcatliu 的突出贡献
关于本书
- 在线阅读(部署在 GitBook 上,可能需要)
- 在线阅读(GitHub 版)
- GitHub 地址
- 作者:xcatliu
- 官方 QQ 群:加入 QQ 群 767142358
本书是作者在学习 TypeScript 后整理的学习笔记。
随着对 TypeScript 理解的加深和 TypeScript社区的发展,本书也会做出相应的更新,欢迎大家 Star 收藏。
对项目的建议,可以提交 issue 向作者反馈
转载的目的说明:
- 无商业用途
- 边阅读,边转载,加深理解和记忆
- 收藏目的,使CSDN平台的博友也能看到这篇优秀的文章
- 对部分章节增加了知识点
- 将不同章节页面整合在了一篇文档中,并加强了目录链接,方便阅读
【返回目录】
本部分介绍了在学习 TypeScript 之前需要了解的知识,具体内容包括:
【上一章: 简介】 【下一章: 安装 TypeScript】
【返回章节】 【返回目录】
首先,我对 TypeScript 的理解如下:
TypeScript 是 JavaScript 的一个超集,主要提供了类型系统和对 ES6 的支持,它由 Microsoft 开发,代码开源于 GitHub 上。
其次引用官网的定义:
TypeScript is a typed superset of JavaScript that compiles to plain JavaScript. Any browser. Any host. Any OS. Open source.
翻译成中文即是:
TypeScript 是 JavaScript 的类型的超集,它可以编译成纯 JavaScript。编译出来的 JavaScript 可以运行在任何浏览器上。TypeScript 编译工具可以运行在任何服务器和任何系统上。TypeScript 是开源的。
TypeScript 官网列举了一些优势,不过我更愿意自己总结一下:
.js
文件可以直接重命名为 .ts
即可任何事物都是有两面性的,我认为 TypeScript 的弊端在于:
大家可以根据自己团队和项目的情况判断是否需要使用 TypeScript。
【上一章: 什么是 TypeScript】 【下一章: Hello TypeScript】
【返回章节】 【返回目录】
NodeJs环境 下载地址
我下载的是node-v8.16.0-x64.msi
TypeScript 的命令行工具安装方法如下:
npm install -g typescript
以上命令会在全局环境下安装 tsc 命令,安装完成之后,我们就可以在任何地方执行 tsc 命令了。
编译一个 TypeScript 文件很简单:
tsc hello.ts
我们约定使用 TypeScript 编写的文件以 .ts
为后缀,用 TypeScript 编写 React 时,以 .tsx
为后缀。
TypeScript 最大的优势便是增强了编辑器和 IDE 的功能,包括代码补全、接口提示、跳转到定义、重构等。
主流的编辑器都支持 TypeScript,这里我推荐使用 Visual Studio Code。
它是一款开源,跨终端的轻量级编辑器,内置了 TypeScript 支持。
另外它本身也是用 TypeScript 编写的。
获取其他编辑器或 IDE 对 TypeScript 的支持:
- Sublime Text
- Atom
- WebStorm
- Vim
- Emacs
- Eclipse
- Visual Studio 2015
- Visual Studio 2013
以下目录结构是一个简单的Demo的结构
主要包括但不限于以下几个目录和文件
/ts:TypeScript源码文件存放的文件夹
/js:编译之后生成的JavaScript文件存放的文件夹
tsconfig.json:TypeScript编译配置文件
另外.vscode是VS Code开发工具特有的文件夹,主要用来存放调试时需要用到的配置文件。
请参阅官方手册(中文版)。
{
"compilerOptions": {
"target": "es5",
"noImplicitAny": false,
"module": "commonjs",
"removeComments": true,
"sourceMap": false,
"outDir": "js"
},
"include":[
"ts"
],
"exclude": [
"js"
]
}
有几个重要的属性需要解释一下:
【上一章: 安装 TypeScript】 【下一章: 基础】
【返回章节】 【返回目录】
我们从一个简单的例子开始。
将以下代码复制到 hello.ts 中:
function sayHello(person: string) {
return 'Hello, ' + person;
}
let user = 'Tom';
console.log(sayHello(user));
然后执行
tsc hello.ts
这时候会生成一个编译好的文件 hello.js
:
function sayHello(person) {
return 'Hello, ' + person;
}
var user = 'Tom';
console.log(sayHello(user));
TypeScript 中,使用 :
指定变量的类型,:
的前后有没有空格都可以。
上述例子中,我们用 :
指定 person 参数类型为 string。但是编译为 js 之后,并没有什么检查的代码被插入进来。
TypeScript 只会进行静态检查,如果发现有错误,编译的时候就会报错
let
是 ES6 中的关键字,和 var 类似,用于定义一个局部变量,可以参阅 let 和 const 命令。
ES6 新增了let命令,用来声明变量。它的用法类似于var,但是所声明的变量,只在let命令所在的代码块内有效。
for{}循环的计数器,就很合适使用let命令。
const声明一个只读的常量。一旦声明,常量的值就不能改变。
const一旦声明变量,就必须立即初始化,不能留到以后赋值。
下面尝试把这段代码编译一下:
function sayHello(person: string) {
return 'Hello, ' + person;
}
let user = [0, 1, 2];
console.log(sayHello(user));
编辑器中会提示错误,编译的时候也会出错:
index.ts(6,22): error TS2345: Argument of type 'number[]' is not assignable to parameter of type 'string'.
但是还是生成了 js 文件:
function sayHello(person) {
return 'Hello, ' + person;
}
var user = [0, 1, 2];
console.log(sayHello(user));
TypeScript 编译的时候即使报错了,还是会生成编译结果,我们仍然可以使用这个编译之后的文件。
如果要在报错的时候终止 js 文件的生成,可以在 tsconfig.json
中配置 noEmitOnError 即可。关于 tsconfig.json,请参阅官方手册(中文版)。
【上一章: Hello TypeScript】 【下一章: 原始数据类型】
【返回目录】
本部分介绍了 TypeScript 中的常用类型和一些基本概念,旨在让大家对 TypeScript 有个初步的理解。具体内容包括:
【上一章: 基础】 【下一章: 任意值】
【返回章节】 【返回目录】
JavaScript 的类型分为两种:原始数据类型(Primitive data types)和对象类型(Object types)。
原始数据类型包括:布尔值、数值、字符串、null、undefined 以及 ES6 中的新类型 Symbol。
本节主要介绍前五种原始数据类型在 TypeScript 中的应用。
返回小节
布尔值是最基础的数据类型,在 TypeScript 中,使用 boolean
定义布尔值类型:
let isDone: boolean = false;
// 编译通过
// 后面约定,未强调编译错误的代码片段,默认为编译通过
注意,使用构造函数 Boolean
创造的对象不是布尔值:
let createdByNewBoolean: boolean = new Boolean(1);
// Type 'Boolean' is not assignable to type 'boolean'.
// 'boolean' is a primitive, but 'Boolean' is a wrapper object. Prefer using 'boolean' when possible.
事实上 new Boolean()
返回的是一个 Boolean
对象:
let createdByNewBoolean: Boolean = new Boolean(1);
直接调用 Boolean
也可以返回一个 boolean
类型:
let createdByBoolean: boolean = Boolean(1);
在 TypeScript 中,boolean
是 JavaScript 中的基本类型,而Boolean
是 JavaScript 中的构造函数。其他基本类型(除了 null
和 undefined
)一样,不再赘述。
返回小节
使用 number
定义数值类型:
let decLiteral: number = 6;
let hexLiteral: number = 0xf00d;
// ES6 中的二进制表示法
let binaryLiteral: number = 0b1010;
// ES6 中的八进制表示法
let octalLiteral: number = 0o744;
let notANumber: number = NaN;
let infinityNumber: number = Infinity;
编译结果:
var decLiteral = 6;
var hexLiteral = 0xf00d;
// ES6 中的二进制表示法
var binaryLiteral = 10;
// ES6 中的八进制表示法
var octalLiteral = 484;
var notANumber = NaN;
var infinityNumber = Infinity;
其中 0b1010
和 0o744
是 ES6 中的二进制和八进制表示法,它们会被编译为十进制数字
返回小节
使用 string
定义字符串类型:
let myName: string = 'Tom';
let myAge: number = 25;
// 模板字符串
let sentence: string = `Hello, my name is ${myName}.
I'll be ${myAge + 1} years old next month.`;
编译结果:
var myName = 'Tom';
var myAge = 25;
// 模板字符串
var sentence = "Hello, my name is " + myName + ".\nI'll be " + (myAge + 1) + " years old next month.";
其中`
用来定义 ES6 中的模板字符串, ${expr}
用来在模板字符串中嵌入表达式。
返回小节
JavaScript 没有空值(Void)的概念,在 TypeScript 中,可以用 void
表示没有任何返回值的函数:
function alertName(): void {
alert('My name is Tom');
}
声明一个 void 类型的变量没有什么用,因为你只能将它赋值为 undefined
和 null
:
let unusable: void = undefined;
返回小节
在 TypeScript 中,可以使用 null
和 undefined
来定义这两个原始数据类型:
let u: undefined = undefined;
let n: null = null;
与 void 的区别是,undefined
和 null
是所有类型的子类型。也就是说 undefined
类型的变量,可以赋值给 number
类型的变量:
// 这样不会报错
let num: number = undefined;
// 这样也不会报错
let u: undefined;
let num: number = u;
而 void
类型的变量不能赋值给 number
类型的变量:
let u: void;
let num: number = u;
// Type 'void' is not assignable to type 'number'.
【上一章: 原始数据类型】 【下一章: 类型推论】
【返回章节】 【返回目录】
任意值(Any)用来表示允许赋值为任意类型。
如果是一个普通类型,在赋值过程中改变类型是不被允许的:
let myFavoriteNumber: string = 'seven';
myFavoriteNumber = 7;
// index.ts(2,1): error TS2322: Type 'number' is not assignable to type 'string'.
但如果是any
类型,则允许被赋值为任意类型。
let myFavoriteNumber: any = 'seven';
myFavoriteNumber = 7;
在任意值上访问任何属性都是允许的:
let anyThing: any = 'hello';
console.log(anyThing.myName);
console.log(anyThing.myName.firstName);
也允许调用任何方法:
let anyThing: any = 'Tom';
anyThing.setName('Jerry');
anyThing.setName('Jerry').sayHello();
anyThing.myName.setFirstName('Cat');
可以认为,声明一个变量为任意值之后,对它的任何操作,返回的内容的类型都是任意值。
变量如果在声明的时候,未指定其类型,那么它会被识别为任意值类型:
let something;
something = 'seven';
something = 7;
something.setName('Tom');
等价于
let something: any;
something = 'seven';
something = 7;
something.setName('Tom');
【上一章: 任意值】 【下一章: 联合类型】
【返回章节】 【返回目录】
如果没有明确的指定类型,那么 TypeScript 会依照类型推论(Type Inference)的规则推断出一个类型。
以下代码虽然没有指定类型,但是会在编译的时候报错:
let myFavoriteNumber = 'seven';
myFavoriteNumber = 7;
// index.ts(2,1): error TS2322: Type 'number' is not assignable to type 'string'.
事实上,它等价于:
let myFavoriteNumber: string = 'seven';
myFavoriteNumber = 7;
// index.ts(2,1): error TS2322: Type 'number' is not assignable to type 'string'.
TypeScript 会在没有明确的指定类型的时候推测出一个类型,这就是类型推论。
如果定义的时候没有赋值,不管之后有没有赋值,都会被推断成 any
类型而完全不被类型检查:
let myFavoriteNumber;
myFavoriteNumber = 'seven';
myFavoriteNumber = 7;
【上一章: 类型推论】 【下一章: 对象的类型——接口】
【返回章节】 【返回目录】
联合类型(Union Types)表示取值可以为多种类型中的一种。
let myFavoriteNumber: string | number;
myFavoriteNumber = 'seven';
myFavoriteNumber = 7;
let myFavoriteNumber: string | number;
myFavoriteNumber = true;
// index.ts(2,1): error TS2322: Type 'boolean' is not assignable to type 'string | number'.
// Type 'boolean' is not assignable to type 'number'.
联合类型使用|
分隔每个类型。
这里的 let myFavoriteNumber: string | number
的含义是,允许myFavoriteNumber
的类型是 string
或者 number
,但是不能是其他类型。
当 TypeScript 不确定一个联合类型的变量到底是哪个类型的时候,我们只能访问此联合类型的所有类型里共有的属性或方法:
function getLength(something: string | number): number {
return something.length;
}
// index.ts(2,22): error TS2339: Property 'length' does not exist on type 'string | number'.
// Property 'length' does not exist on type 'number'.
上例中,length
不是string
和number
的共有属性,所以会报错。
访问 string
和number
的共有属性是没问题的:
function getString(something: string | number): string {
return something.toString();
}
联合类型的变量在被赋值的时候,会根据类型推论的规则推断出一个类型:
let myFavoriteNumber: string | number;
myFavoriteNumber = 'seven';
console.log(myFavoriteNumber.length); // 5
myFavoriteNumber = 7;
console.log(myFavoriteNumber.length); // 编译时报错
// index.ts(5,30): error TS2339: Property 'length' does not exist on type 'number'.
上例中,第二行的 myFavoriteNumber
被推断成了string
,访问它的 length 属性不会报错。
而第四行的myFavoriteNumber
被推断成了number
,访问它的 length
属性时就报错了。
【上一章: 联合类型】 【下一章: 数组的类型】
【返回章节】 【返回目录】
在 TypeScript 中,我们使用接口(Interfaces)来定义对象的类型。我们需要了解以下几部分:
返回小节
在面向对象语言中,接口(Interfaces)是一个很重要的概念,它是对行为的抽象,而具体如何行动需要由类(classes)去实现(implement)。
TypeScript 中的接口是一个非常灵活的概念,除了可用于对类的一部分行为进行抽象以外,也常用于对「对象的形状(Shape)」进行描述。
interface Person {
name: string;
age: number;
}
let tom: Person = {
name: 'Tom',
age: 25
};
上面的例子中,我们定义了一个接口 Person
,接着定义了一个变量 tom
,它的类型是 Person
。这样,我们就约束了 tom 的形状必须和接口 Person
一致。
接口一般首字母大写。有的编程语言中会建议接口的名称加上 I 前缀。
定义的变量比接口少了一些属性是不允许的:
interface Person {
name: string;
age: number;
}
let tom: Person = {
name: 'Tom'
};
// index.ts(6,5): error TS2322: Type '{ name: string; }' is not assignable to type 'Person'.
// Property 'age' is missing in type '{ name: string; }'.
多一些属性也是不允许的:
interface Person {
name: string;
age: number;
}
let tom: Person = {
name: 'Tom',
age: 25,
gender: 'male'
};
// index.ts(9,5): error TS2322: Type '{ name: string; age: number; gender: string; }' is not assignable to type 'Person'.
// Object literal may only specify known properties, and 'gender' does not exist in type 'Person'.
可见,赋值的时候,变量的形状必须和接口的形状保持一致。
返回小节
有时我们希望不要完全匹配一个形状,那么可以用可选属性:
interface Person {
name: string;
age?: number;
}
let tom: Person = {
name: 'Tom'
};
interface Person {
name: string;
age?: number;
}
let tom: Person = {
name: 'Tom',
age: 25
};
可选属性的含义是该属性可以不存在。
这时仍然不允许添加未定义的属性:
interface Person {
name: string;
age?: number;
}
let tom: Person = {
name: 'Tom',
age: 25,
gender: 'male'
};
// examples/playground/index.ts(9,5): error TS2322: Type '{ name: string; age: number; gender: string; }' is not assignable to type 'Person'.
// Object literal may only specify known properties, and 'gender' does not exist in type 'Person'.
返回小节
有时候我们希望一个接口允许有任意的属性,可以使用如下方式:
interface Person {
name: string;
age?: number;
[propName: string]: any;
}
let tom: Person = {
name: 'Tom',
gender: 'male'
};
使用 [propName: string]
定义了任意属性取string
类型的值。
需要注意的是,一旦定义了任意属性,那么确定属性和可选属性的类型都必须是它的类型的子集:
interface Person {
name: string;
age?: number;
[propName: string]: string;
}
let tom: Person = {
name: 'Tom',
age: 25,
gender: 'male'
};
// index.ts(3,5): error TS2411: Property 'age' of type 'number' is not assignable to string index type 'string'.
// index.ts(7,5): error TS2322: Type '{ [x: string]: string | number; name: string; age: number; gender: string; }' is not assignable to type 'Person'.
// Index signatures are incompatible.
// Type 'string | number' is not assignable to type 'string'.
// Type 'number' is not assignable to type 'string'.
上例中,任意属性的值允许是 string
,但是可选属性 age
的值却是 number
,number
不是 string
的子属性,所以报错了。
另外,在报错信息中可以看出,此时 { name: 'Tom', age: 25, gender: 'male' }
的类型被推断成了{ [x: string]: string | number; name: string; age: number; gender: string; }
,这是联合类型和接口的结合。
返回小节
有时候我们希望对象中的一些字段只能在创建的时候被赋值,那么可以用 readonly
定义只读属性:
interface Person {
readonly id: number;
name: string;
age?: number;
[propName: string]: any;
}
let tom: Person = {
id: 89757,
name: 'Tom',
gender: 'male'
};
tom.id = 9527;
// index.ts(14,5): error TS2540: Cannot assign to 'id' because it is a constant or a read-only property.
上例中,使用 readonly
定义的属性id
初始化后,又被赋值了,所以报错了。
注意,只读的约束存在于第一次给对象赋值的时候,而不是第一次给只读属性赋值的时候:
interface Person {
readonly id: number;
name: string;
age?: number;
[propName: string]: any;
}
let tom: Person = {
name: 'Tom',
gender: 'male'
};
tom.id = 89757;
// index.ts(8,5): error TS2322: Type '{ name: string; gender: string; }' is not assignable to type 'Person'.
// Property 'id' is missing in type '{ name: string; gender: string; }'.
// index.ts(13,5): error TS2540: Cannot assign to 'id' because it is a constant or a read-only property.
上例中,报错信息有两处,第一处是在对 tom
进行赋值的时候,没有给id
赋值。
第二处是在给 tom.id
赋值的时候,由于它是只读属性,所以报错了。
【上一章: 对象的类型——接口】 【下一章: 函数的类型】
【返回章节】 【返回目录】
在 TypeScript 中,数组类型有多种定义方式,比较灵活。我们需要了解:
返回小节
最简单的方法是使用「类型 + 方括号」来表示数组:
let fibonacci: number[] = [1, 1, 2, 3, 5];
数组的项中不允许出现其他的类型:
let fibonacci: number[] = [1, '1', 2, 3, 5];
// Type 'string' is not assignable to type 'number'.
数组的一些方法的参数也会根据数组在定义时约定的类型进行限制:
let fibonacci: number[] = [1, 1, 2, 3, 5];
fibonacci.push('8');
// Argument of type '"8"' is not assignable to parameter of type 'number'.
上例中,push
方法只允许传入 number
类型的参数,但是却传了一个"8"
类型的参数,所以报错了。这里 "8"
是一个字符串字面量类型,会在后续章节中详细介绍。
返回小节
我们也可以使用数组泛型(Array Generic) Array
来表示数组:
let fibonacci: Array<number> = [1, 1, 2, 3, 5];
关于泛型,可以参考泛型一章。
返回小节
接口也可以用来描述数组:
interface NumberArray {
[index: number]: number;
}
let fibonacci: NumberArray = [1, 1, 2, 3, 5];
NumberArray
表示:只要索引的类型是数字时,那么值的类型必须是数字。
虽然接口也可以用来描述数组,但是我们一般不会这么做,因为这种方式比前两种方式复杂多了。
不过有一种情况例外,那就是它常用来表示类数组
返回小节
类数组(Array-like Object)不是数组类型,比如 arguments
:
function sum() {
let args: number[] = arguments;
}
// Type 'IArguments' is missing the following properties from type 'number[]': pop, push, concat, join, and 24 more.
上例中,arguments
实际上是一个类数组,不能用普通的数组的方式来描述,而应该用接口:
function sum() {
let args: {
[index: number]: number;
length: number;
callee: Function;
} = arguments;
}
在这个例子中,我们除了约束当索引的类型是数字时,值的类型必须是数字之外,也约束了它还有 length
和 callee
两个属性。
事实上常用的类数组都有自己的接口定义,如 IArguments
, NodeList
, HTMLCollection
等:
function sum() {
let args: IArguments = arguments;
}
其中 IArguments
是 TypeScript
中定义好了的类型,它实际上就是:
interface IArguments {
[index: number]: any;
length: number;
callee: Function;
}
关于内置对象,可以参考内置对象一章。
返回小节
一个比较常见的做法是,用 any
表示数组中允许出现任意类型:
let list: any[] = ['xcatliu', 25, { website: 'http://xcatliu.com' }];
【上一章: 数组的类型】 【下一章: 类型断言】
【返回章节】 【返回目录】
函数是 JavaScript 中的一等公民
我们需要了解以下:
返回小节
在 JavaScript 中,有两种常见的定义函数的方式——函数声明(Function Declaration)和函数表达式(Function Expression):
// 函数声明(Function Declaration)
function sum(x, y) {
return x + y;
}
// 函数表达式(Function Expression)
let mySum = function (x, y) {
return x + y;
};
一个函数有输入和输出,要在 TypeScript 中对其进行约束,需要把输入和输出都考虑到,其中函数声明的类型定义较简单:
function sum(x: number, y: number): number {
return x + y;
}
注意,输入多余的(或者少于要求的)参数,是不被允许的:
function sum(x: number, y: number): number {
return x + y;
}
sum(1, 2, 3);
// index.ts(4,1): error TS2346: Supplied parameters do not match any signature of call target.
function sum(x: number, y: number): number {
return x + y;
}
sum(1);
// index.ts(4,1): error TS2346: Supplied parameters do not match any signature of call target.
返回小节
如果要我们现在写一个对函数表达式(Function Expression)的定义,可能会写成这样:
let mySum = function (x: number, y: number): number {
return x + y;
};
这是可以通过编译的,不过事实上,上面的代码只对等号右侧的匿名函数进行了类型定义,而等号左边的 mySum
,是通过赋值操作进行类型推论而推断出来的。如果需要我们手动给 mySum
添加类型,则应该是这样:
let mySum: (x: number, y: number) => number = function (x: number, y: number): number {
return x + y;
};
注意不要混淆了 TypeScript
中的=>
和 ES6
中的=>
。
返回小节
我们也可以使用接口的方式来定义一个函数需要符合的形状:
interface SearchFunc {
(source: string, subString: string): boolean;
}
let mySearch: SearchFunc;
mySearch = function(source: string, subString: string) {
return source.search(subString) !== -1;
}
返回小节
前面提到,输入多余的(或者少于要求的)参数,是不允许的。那么如何定义可选的参数呢?
与接口中的可选属性类似,我们用?
表示可选的参数:
function buildName(firstName: string, lastName?: string) {
if (lastName) {
return firstName + ' ' + lastName;
} else {
return firstName;
}
}
let tomcat = buildName('Tom', 'Cat');
let tom = buildName('Tom');
需要注意的是,可选参数必须接在必需参数后面。换句话说,可选参数后面不允许再出现必需参数了:
function buildName(firstName?: string, lastName: string) {
if (firstName) {
return firstName + ' ' + lastName;
} else {
return lastName;
}
}
let tomcat = buildName('Tom', 'Cat');
let tom = buildName(undefined, 'Tom');
// index.ts(1,40): error TS1016: A required parameter cannot follow an optional parameter.
返回小节
在 ES6 中,我们允许给函数的参数添加默认值,TypeScript 会将添加了默认值的参数识别为可选参数:
function buildName(firstName: string, lastName: string = 'Cat') {
return firstName + ' ' + lastName;
}
let tomcat = buildName('Tom', 'Cat');
let tom = buildName('Tom');
此时就不受「可选参数必须接在必需参数后面」的限制了:
function buildName(firstName: string = 'Tom', lastName: string) {
return firstName + ' ' + lastName;
}
let tomcat = buildName('Tom', 'Cat');
let cat = buildName(undefined, 'Cat');
关于默认参数,可以参考 ES6 中函数参数的默认值。
返回小节
ES6 中,可以使用 ...rest
的方式获取函数中的剩余参数(rest 参数):
function push(array, ...items) {
items.forEach(function(item) {
array.push(item);
});
}
let a = [];
push(a, 1, 2, 3);
事实上,items
是一个数组。所以我们可以用数组的类型来定义它:
function push(array: any[], ...items: any[]) {
items.forEach(function(item) {
array.push(item);
});
}
let a = [];
push(a, 1, 2, 3);
注意,rest 参数只能是最后一个参数,关于 rest 参数,可以参考 ES6 中的 rest 参数。
返回小节
重载允许一个函数接受不同数量或类型的参数时,作出不同的处理。
比如,我们需要实现一个函数 reverse
,输入数字 123
的时候,输出反转的数字 321
,输入字符串 'hello'
的时候,输出反转的字符串'olleh'
。
利用联合类型,我们可以这么实现:
function reverse(x: number | string): number | string {
if (typeof x === 'number') {
return Number(x.toString().split('').reverse().join(''));
} else if (typeof x === 'string') {
return x.split('').reverse().join('');
}
}
然而这样有一个缺点,就是不能够精确的表达,输入为数字的时候,输出也应该为数字,输入为字符串的时候,输出也应该为字符串。
这时,我们可以使用重载定义多个 reverse
的函数类型:
function reverse(x: number): number;
function reverse(x: string): string;
function reverse(x: number | string): number | string {
if (typeof x === 'number') {
return Number(x.toString().split('').reverse().join(''));
} else if (typeof x === 'string') {
return x.split('').reverse().join('');
}
}
上例中,我们重复定义了多次函数 reverse
,前几次都是函数定义,最后一次是函数实现。在编辑器的代码提示中,可以正确的看到前两个提示。
注意,TypeScript 会优先从最前面的函数定义开始匹配,所以多个函数定义如果有包含关系,需要优先把精确的定义写在前面
【上一章: 函数的类型】 【下一章: 声明文件】
【返回章节】 【返回目录】
类型断言(Type Assertion)可以用来手动指定一个值的类型。
<类型>值
或
值 as 类型
在 tsx 语法(React 的 jsx 语法的 ts 版)中必须用后一种。
之前提到过联合类型,当 TypeScript 不确定一个联合类型的变量到底是哪个类型的时候,我们只能访问此联合类型的所有类型里共有的属性或方法:
function getLength(something: string | number): number {
return something.length;
}
// index.ts(2,22): error TS2339: Property 'length' does not exist on type 'string | number'.
// Property 'length' does not exist on type 'number'.
而有时候,我们确实需要在还不确定类型的时候就访问其中一个类型的属性或方法,比如:
function getLength(something: string | number): number {
if (something.length) {
return something.length;
} else {
return something.toString().length;
}
}
// index.ts(2,19): error TS2339: Property 'length' does not exist on type 'string | number'.
// Property 'length' does not exist on type 'number'.
// index.ts(3,26): error TS2339: Property 'length' does not exist on type 'string | number'.
// Property 'length' does not exist on type 'number'.
上例中,获取 something.length
的时候会报错。
此时可以使用类型断言,将 something
断言成 string
:
function getLength(something: string | number): number {
if ((<string>something).length) {
return (<string>something).length;
} else {
return something.toString().length;
}
}
类型断言的用法如上,在需要断言的变量前加上 即可。
类型断言不是类型转换,断言成一个联合类型中不存在的类型是不允许的:
function toBoolean(something: string | number): boolean {
return <boolean>something;
}
// index.ts(2,10): error TS2352: Type 'string | number' cannot be converted to type 'boolean'.
// Type 'number' is not comparable to type 'boolean'.
【上一章: 类型断言】 【下一章: 内置对象】
【返回章节】 【返回目录】
当使用第三方库时,我们需要引用它的声明文件,才能获得对应的代码补全、接口提示等功能。
有以下小节:
返回小节
由于本章涉及大量新语法,故在本章开头列出新语法的索引,方便大家在使用这些新语法时能快速查找到对应的讲解:
返回小节
假如我们想使用第三方库 jQuery,一种常见的方式是在 html 中通过 标签引入 jQuery,然后就可以使用全局变量
$
或 jQuery
了。
我们通常这样获取一个 id
是 foo
的元素:
$('#foo');
// or
jQuery('#foo');
但是在 ts 中,编译器并不知道 $ 或 jQuery 是什么东西1:
jQuery('#foo');
// ERROR: Cannot find name 'jQuery'.
这时,我们需要使用 declare var
来定义它的类型2:
declare var jQuery: (selector: string) => any;
jQuery('#foo');
上例中,declare var
并没有真的定义一个变量,只是定义了全局变量jQuery
的类型,仅仅会用于编译时的检查,在编译结果中会被删除。它编译结果是:
jQuery('#foo');
除了 declare var
之外,还有其他很多种声明语句,将会在后面详细介绍。
返回小节
通常我们会把声明语句放到一个单独的文件(jQuery.d.ts)
中,这就是声明文件3:
// src/jQuery.d.ts
declare var jQuery: (selector: string) => any;
// src/index.ts
jQuery('#foo');
声明文件必需以 .d.ts
为后缀。
一般来说,ts 会解析项目中所有的 *.ts
文件,当然也包含以 .d.ts
结尾的文件。所以当我们将 jQuery.d.ts
放到项目中时,其他所有 *.ts
文件就都可以获得 jQuery
的类型定义了。
/path/to/project
├── src
| ├── index.ts
| └── jQuery.d.ts
└── tsconfig.json
假如仍然无法解析,那么可以检查下 tsconfig.json
中的 files
、include
和 exclude
配置,确保其包含了 jQuery.d.ts
文件。
这里只演示了全局变量这种模式的声明文件,假如是通过模块导入的方式使用第三方库的话,那么引入声明文件又是另一种方式了,将会在后面详细介绍。
当然,jQuery 的声明文件不需要我们定义了,社区已经帮我们定义好了:jQuery in DefinitelyTyped。
我们可以直接下载下来使用,但是更推荐的是使用 @types 统一管理第三方库的声明文件。
@types
的使用方式很简单,直接用 npm 安装对应的声明模块即可,以 jQuery 举例:
npm install @types/jquery --save-dev
可以在这个TypeSearch页面搜索你需要的声明文件
返回小节
当一个第三方库没有提供声明文件时,我们就需要自己书写声明文件了。前面只介绍了最简单的声明文件内容,而真正书写一个声明文件并不是一件简单的事,以下会详细介绍如何书写声明文件。
在不同的场景下,声明文件的内容和使用方式会有所区别。
库的使用场景主要有以下几种:
标签引入第三方库,注入全局变量import foo from 'foo'
导入,符合 ES6 模块规范
标签引入,又可以通过 import
导入
标签引入后,改变一个全局变量的结构
或 import
导入后,改变另一个模块的结构同时还需了解:
返回场景目录
全局变量是最简单的一种场景,之前举的例子就是通过
使用全局变量的声明文件时,如果是以 npm install @types/xxx --save-dev
安装的,则不需要任何配置。如果是将声明文件直接存放于当前项目中,则建议和其他源码一起放到 src 目录下(或者对应的源码目录下):
/path/to/project
├── src
| ├── index.ts
| └── jQuery.d.ts
└── tsconfig.json
如果没有生效,可以检查下 tsconfig.json
中的 files
、include
和 exclude
配置,确保其包含了 jQuery.d.ts
文件。
全局变量的声明文件主要有以下几种语法:
【返回 全局变量】 【返回 新语法索引】
在所有的声明语句中,declare var
是最简单的,如之前所学,它能够用来定义一个全局变量的类型。与其类似的,还有declare let
和 declare const
,使用 let
与使用 var
没有什么区别:
// src/jQuery.d.ts
declare let jQuery: (selector: string) => any;
// src/index.ts
jQuery('#foo');
// 使用 declare let 定义的 jQuery 类型,允许修改这个全局变量
jQuery = function(selector) {
return document.querySelector(selector);
};
而当我们使用 const 定义时,表示此时的全局变量是一个常量,不允许再去修改它的值了4:
// src/jQuery.d.ts
declare const jQuery: (selector: string) => any;
jQuery('#foo');
// 使用 declare const 定义的 jQuery 类型,禁止修改这个全局变量
jQuery = function(selector) {
return document.querySelector(selector);
};
// ERROR: Cannot assign to 'jQuery' because it is a constant or a read-only property.
一般来说,全局变量都是禁止修改的常量,所以大部分情况都应该使用const
而不是 var
或 let
。
需要注意的是,声明语句中只能定义类型,切勿在声明语句中定义具体的实现5:
declare const jQuery = function(selector) {
return document.querySelector(selector);
};
// ERROR: An implementation cannot be declared in ambient contexts.
【返回 全局变量】 【返回 新语法索引】
declare function
用来定义全局函数的类型。jQuery 其实就是一个函数,所以也可以用 function
来定义:
// src/jQuery.d.ts
declare function jQuery(selector: string): any;
// src/index.ts
jQuery('#foo');
在函数类型的声明语句中,函数重载也是支持的6:
// src/jQuery.d.ts
declare function jQuery(selector: string): any;
declare function jQuery(domReadyCallback: () => any): any;
// src/index.ts
jQuery('#foo');
jQuery(function() {
alert('Dom Ready!');
});
【返回 全局变量】 【返回 新语法索引】
当全局变量是一个类的时候,我们用 declare class
来定义它的类型7:
// src/Animal.d.ts
declare class Animal {
name: string;
constructor(name: string);
sayHi(): string;
}
// src/index.ts
let cat = new Animal('Tom');
同样的,declare class
语句也只能用来定义类型,不能用来定义具体的实现,比如定义 sayHi
方法的具体实现则会报错:
// src/Animal.d.ts
declare class Animal {
name: string;
constructor(name: string);
sayHi() {
return `My name is ${this.name}`;
};
// ERROR: An implementation cannot be declared in ambient contexts.
}
【返回 全局变量】 【返回 新语法索引】
使用 declare enum 定义的枚举类型也称作外部枚举(Ambient Enums),举例如下8:
// src/Directions.d.ts
declare enum Directions {
Up,
Down,
Left,
Right
}
// src/index.ts
let directions = [Directions.Up, Directions.Down, Directions.Left, Directions.Right];
与其他全局变量的类型声明一致,declare enum
仅用来定义类型,而不是具体的值。
Directions.d.ts
仅仅会用于编译时的检查,声明文件里的内容在编译结果中会被删除。它编译结果是:
var directions = [Directions.Up, Directions.Down, Directions.Left, Directions.Right];
其中Directions
是由第三方库定义好的全局变量。
【返回 全局变量】 【返回 新语法索引】
namespace
是 ts 早期时为了解决模块化而创造的关键字,中文称为命名空间。
由于历史遗留原因,在早期还没有 ES6 的时候,ts 提供了一种模块化方案,使用 module
关键字表示内部模块。但由于后来 ES6 也使用了 module
关键字,ts 为了兼容 ES6,使用namespace
替代了自己的 module
,更名为命名空间。
随着 ES6 的广泛应用,现在已经不建议再使用 ts 中的 namespace
,而推荐使用 ES6 的模块化方案了,故我们不再需要学习 namespace
的使用了。
namespace
被淘汰了,但是在声明文件中,declare namespace
还是比较常用的,它用来表示全局变量是一个对象,包含很多子属性。
比如 jQuery 是一个全局变量,它是一个对象,提供了一个jQuery.ajax
方法可以调用,那么我们就应该使用 declare namespace jQuery
来声明这个拥有多个子属性的全局变量。
// src/jQuery.d.ts
declare namespace jQuery {
function ajax(url: string, settings?: any): void;
}
// src/index.ts
jQuery.ajax('/api/get_something');
注意,在 declare namespace
内部,我们直接使用 function ajax
来声明函数,而不是使用 declare function ajax
。类似的,也可以使用 const
, class
, enum
等语句9:
// src/jQuery.d.ts
declare namespace jQuery {
function ajax(url: string, settings?: any): void;
const version: number;
class Event {
blur(eventType: EventType): void
}
enum EventType {
CustomClick
}
}
// src/index.ts
jQuery.ajax('/api/get_something');
console.log(jQuery.version);
const e = new jQuery.Event();
e.blur(jQuery.EventType.CustomClick);
如果对象拥有深层的层级,则需要用嵌套的namespace
来声明深层的属性的类型10:
// src/jQuery.d.ts
declare namespace jQuery {
function ajax(url: string, settings?: any): void;
namespace fn {
function extend(object: any): void;
}
}
// src/index.ts
jQuery.ajax('/api/get_something');
jQuery.fn.extend({
check: function() {
return this.each(function() {
this.checked = true;
});
}
});
假如 jQuery
下仅有 fn
这一个属性(没有 ajax 等其他属性或方法),则可以不需要嵌套 namespace
11:
// src/jQuery.d.ts
declare namespace jQuery.fn {
function extend(object: any): void;
}
// src/index.ts
jQuery.fn.extend({
check: function() {
return this.each(function() {
this.checked = true;
});
}
});
【返回 全局变量】 【返回 新语法索引】
除了全局变量之外,可能有一些类型我们也希望能暴露出来。在类型声明文件中,我们可以直接使用 interface
或 type
来声明一个全局的接口或类型12:
// src/jQuery.d.ts
interface AjaxSettings {
method?: 'GET' | 'POST'
data?: any;
}
declare namespace jQuery {
function ajax(url: string, settings?: AjaxSettings): void;
}
这样的话,在其他文件中也可以使用这个接口或类型了:
// src/index.ts
let settings: AjaxSettings = {
method: 'POST',
data: {
name: 'foo'
}
};
jQuery.ajax('/api/post_something', settings);
type 与 interface 类似,不再赘述。
暴露在最外层的 interface
或 type
会作为全局类型作用于整个项目中,我们应该尽可能的减少全局变量或全局类型的数量。故最好将他们放到 namespace
下13:
// src/jQuery.d.ts
declare namespace jQuery {
interface AjaxSettings {
method?: 'GET' | 'POST'
data?: any;
}
function ajax(url: string, settings?: AjaxSettings): void;
}
注意,在使用这个interface
的时候,也应该加上 jQuery
前缀:
// src/index.ts
let settings: jQuery.AjaxSettings = {
method: 'POST',
data: {
name: 'foo'
}
};
jQuery.ajax('/api/post_something', settings);
假如 jQuery 既是一个函数,可以直接被调用 jQuery('#foo')
,又是一个对象,拥有子属性 jQuery.ajax()
(事实确实如此),那么我们可以组合多个声明语句,它们会不冲突的合并起来14:
// src/jQuery.d.ts
declare function jQuery(selector: string): any;
declare namespace jQuery {
function ajax(url: string, settings?: any): void;
}
// src/index.ts
jQuery('#foo');
jQuery.ajax('/api/get_something');
关于声明合并的更多用法,可以查看声明合并章节。
返回场景目录
一般我们通过 import foo from 'foo'
导入一个 npm 包,这是符合 ES6 模块规范的。
在我们尝试给一个 npm 包创建声明文件之前,需要先看看它的声明文件是否已经存在。一般来说,npm 包的声明文件可能存在于两个地方:
package.json
中有 types
字段,或者有一个 index.d.ts
声明文件。这种模式不需要额外安装其他包,是最为推荐的,所以以后我们自己创建 npm 包的时候,最好也将声明文件与 npm 包绑定在一起。@types
里。我们只需要尝试安装一下对应的 @types
包就知道是否存在该声明文件,安装命令是 npm install @types/foo --save-dev
。这种模式一般是由于 npm 包的维护者没有提供声明文件,所以只能由其他人将声明文件发布到 @types
里了。假如以上两种方式都没有找到对应的声明文件,那么我们就需要自己为它写声明文件了。由于是通过 import
语句导入的模块,所以声明文件存放的位置也有所约束,一般有两种方案:
node_modules/@types/foo/index.d.ts
文件,存放 foo
模块的声明文件。这种方式不需要额外的配置,但是 node_modules
目录不稳定,代码也没有被保存到仓库中,无法回溯版本,有不小心被删除的风险,故不太建议用这种方案,一般只用作临时测试。types
目录,专门用来管理自己写的声明文件,将foo
的声明文件放到 types/foo/index.d.ts
中。这种方式需要配置下tsconfig.json
中的 paths
和 baseUrl
字段。目录结构:
/path/to/project
├── src
| └── index.ts
├── types
| └── foo
| └── index.d.ts
└── tsconfig.json
tsconfig.json
内容:
{
"compilerOptions": {
"module": "commonjs",
"baseUrl": "./",
"paths": {
"*": ["types/*"]
}
}
}
如此配置之后,通过 import
导入 foo
的时候,也会去 types
目录下寻找对应的模块的声明文件了。
注意 module
配置可以有很多种选项,不同的选项会影响模块的导入导出模式。这里我们使用了 commonjs
这个最常用的选项,后面的教程也都默认使用的这个选项。
不管采用了以上两种方式中的哪一种,我都强烈建议大家将书写好的声明文件(通过给第三方库发 pull request,或者直接提交到 @types
里)发布到开源社区中,享受了这么多社区的优秀的资源,就应该在力所能及的时候给出一些回馈。只有所有人都参与进来,才能让 ts 社区更加繁荣。
npm 包的声明文件主要有以下几种语法:
【返回 npm包】 【返回 新语法索引】
npm 包的声明文件与全局变量的声明文件有很大区别。在 npm 包的声明文件中,使用 declare
不再会声明一个全局变量,而只会在当前文件中声明一个局部变量。只有在声明文件中使用 export
导出,然后在使用方import
导入后,才会应用到这些类型声明。
export
的语法与普通的 ts 中的语法类似,区别仅在于声明文件中禁止定义具体的实现15:
// types/foo/index.d.ts
export const name: string;
export function getName(): string;
export class Animal {
constructor(name: string);
sayHi(): string;
}
export enum Directions {
Up,
Down,
Left,
Right
}
export interface Options {
data: any;
}
对应的导入和使用模块应该是这样:
// src/index.ts
import { name, getName, Animal, Directions, Options } from 'foo';
console.log(name);
let myName = getName();
let cat = new Animal('Tom');
let directions = [Directions.Up, Directions.Down, Directions.Left, Directions.Right];
let options: Options = {
data: {
name: 'foo'
}
};
我们也可以使用 declare
先声明多个变量,最后再用export
一次性导出。上例的声明文件可以等价的改写为16:
// types/foo/index.d.ts
declare const name: string;
declare function getName(): string;
declare class Animal {
constructor(name: string);
sayHi(): string;
}
declare enum Directions {
Up,
Down,
Left,
Right
}
interface Options {
data: any;
}
export { name, getName, Animal, Directions, Options };
注意,与全局变量的声明文件类似,interface
前是不需要 declare
的。
【返回 npm包】 【返回 新语法索引】
与 declare namespace
类似,export namespace
用来导出一个拥有子属性的对象17:
// types/foo/index.d.ts
export namespace foo {
const name: string;
namespace bar {
function baz(): string;
}
}
// src/index.ts
import { foo } from 'foo';
console.log(foo.name);
foo.bar.baz();
【返回 npm包】 【返回 新语法索引】
在 ES6 模块系统中,使用 export default
可以导出一个默认值,使用方可以用import foo from 'foo'
而不是import { foo } from 'foo'
来导入这个默认值。
在类型声明文件中,export default
用来导出默认值的类型18:
// types/foo/index.d.ts
export default function foo(): string;
// src/index.ts
import foo from 'foo';
foo();
注意,只有 function
、class
和 interface
可以直接默认导出,其他的变量需要先定义出来,再默认导出19:
// types/foo/index.d.ts
export default enum Directions {
// ERROR: Expression expected.
Up,
Down,
Left,
Right
}
上例中 export default enum
是错误的语法,需要使用 declare enum
定义出来,然后使用 export default
导出:
// types/foo/index.d.ts
declare enum Directions {
Up,
Down,
Left,
Right
}
export default Directions;
针对这种默认导出,我们一般会将导出语句放在整个声明文件的最前面20:
// types/foo/index.d.ts
export default Directions;
declare enum Directions {
Up,
Down,
Left,
Right
}
【返回 npm包】 【返回 新语法索引】
在 commonjs 规范中,我们用以下方式来导出一个模块:
// 整体导出
module.exports = foo;
// 单个导出
exports.bar = bar;
在 ts 中,针对这种模块导出,有多种方式可以导入,第一种方式是 const ... = require
:
// 整体导入
const foo = require('foo');
// 单个导入
const bar = require('foo').bar;
第二种方式是 import ... from
,注意针对整体导出,需要使用 import * as
来导入:
// 整体导入
import * as foo from 'foo';
// 单个导入
import { bar } from 'foo';
第三种方式是 import ... require
,这也是 ts 官方推荐的方式:
// 整体导入
import foo = require('foo');
// 单个导入
import bar = foo.bar;
对于这种使用 commonjs 规范的库,假如要为它写类型声明文件的话,就需要使用到 export =
这种语法了21:
// types/foo/index.d.ts
export = foo;
declare function foo(): string;
declare namespace foo {
const bar: number;
}
需要注意的是,上例中使用了 export =
之后,就不能再单个导出 export { bar }
了。所以我们通过声明合并,使用 declare namespace foo
来将 bar 合并到 foo 里。
准确地讲,export =
不仅可以用在声明文件中,也可以用在普通的 ts 文件中。实际上,import ... require
和 export =
都是 ts 为了兼容 AMD 规范和 commonjs 规范而创立的新语法,由于并不常用也不推荐使用,所以这里就不详细介绍了,感兴趣的可以看ts官方文档-export =和import = require()。
由于很多第三方库是 commonjs
规范的,所以声明文件也就不得不用到export =
这种语法了。但是还是需要再强调下,相比与export =
,我们更推荐使用 ES6 标准的export default
和 export
。
返回场景目录
既可以通过 标签引入,又可以通过
import
导入的库,称为 UMD 库。相比于 npm 包的类型声明文件,我们需要额外声明一个全局变量,为了实现这种方式,ts 提供了一个新语法 export as namespace
。
【返回 UMD库】 【返回 新语法索引】
一般使用 export as namespace
时,都是先有了 npm 包的声明文件,再基于它添加一条 export as namespace
语句,即可将声明好的一个变量声明为全局变量,举例如下22:
// types/foo/index.d.ts
export as namespace foo;
export = foo;
declare function foo(): string;
declare namespace foo {
const bar: number;
}
当然它也可以与 export default
一起使用:
// types/foo/index.d.ts
export as namespace foo;
export default foo;
declare function foo(): string;
declare namespace foo {
const bar: number;
}
返回场景目录
有的第三方库扩展了一个全局变量,可是此全局变量的类型却没有相应的更新过来,就会导致 ts 编译错误,此时就需要扩展全局变量的类型。比如扩展 String 类型23:
interface String {
prependHello(): string;
}
'foo'.prependHello();
通过声明合并,使用 interface String
即可给 String
添加属性或方法。
也可以使用 declare namespace
给已有的命名空间添加类型声明24:
// types/jquery-plugin/index.d.ts
declare namespace JQuery {
interface CustomOptions {
bar: string;
}
}
interface JQueryStatic {
foo(options: JQuery.CustomOptions): string;
}
// src/index.ts
jQuery.foo({
bar: ''
});
返回场景目录
如之前所说,对于一个 npm 包或者 UMD 库的声明文件,只有 export
导出的类型声明才能被导入。所以对于 npm 包或 UMD 库,如果导入此库之后会扩展全局变量,则需要使用另一种语法在声明文件中扩展全局变量的类型,那就是 declare global
。
【返回 在npm包或UMD库中扩展全局变】 【返回 新语法索引】
使用 declare global
可以在 npm 包或者 UMD 库的声明文件中扩展全局变量的类型25:
// types/foo/index.d.ts
declare global {
interface String {
prependHello(): string;
}
}
export {};
// src/index.ts
'bar'.prependHello();
注意即使此声明文件不需要导出任何东西,仍然需要导出一个空对象,用来告诉编译器这是一个模块的声明文件,而不是一个全局变量的声明文件。
返回场景目录
有时通过 import
导入一个模块插件,可以改变另一个原有模块的结构。此时如果原有模块已经有了类型声明文件,而插件模块没有类型声明文件,就会导致类型不完整,缺少插件部分的类型。ts 提供了一个语法 declare module
,它可以用来扩展原有模块的类型。
【返回 模块插件】 【返回 新语法索引】
如果是需要扩展原有模块的话,需要在类型声明文件中先引用原有模块,再使用 declare module
扩展原有模块26:
// types/moment-plugin/index.d.ts
import * as moment from 'moment';
declare module 'moment' {
export function foo(): moment.CalendarKey;
}
// src/index.ts
import * as moment from 'moment';
import 'moment-plugin';
moment.foo();
declare module
也可用于在一个文件中一次性声明多个模块的类型27:
// types/foo-bar.d.ts
declare module 'foo' {
export interface Foo {
foo: string;
}
}
declare module 'bar' {
export function bar(): string;
}
// src/index.ts
import { Foo } from 'foo';
import * as bar from 'bar';
let f: Foo;
bar.bar();
返回书写声明文件录
一个声明文件有时会依赖另一个声明文件中的类型,比如在前面的 declare module
的例子中,我们就在声明文件中导入了moment
,并且使用了 moment.CalendarKey
这个类型:
// types/moment-plugin/index.d.ts
import * as moment from 'moment';
declare module 'moment' {
export function foo(): moment.CalendarKey;
}
除了可以在声明文件中通过 import
导入另一个声明文件中的类型之外,还有一个语法也可以用来导入另一个声明文件,那就是三斜线指令。
【返回 新语法索引】
与 namespace
类似,三斜线指令也是 ts 在早期版本中为了描述模块之间的依赖关系而创造的语法。随着 ES6 的广泛应用,现在已经不建议再使用 ts 中的三斜线指令来声明模块之间的依赖关系了。
但是在声明文件中,它还是有一定的用武之地。
类似于声明文件中的import
,它可以用来导入另一个声明文件。与import
的区别是,当且仅当在以下几个场景下,我们才需要使用三斜线指令替代 import
:
这些场景听上去很拗口,但实际上很好理解——在全局变量的声明文件中,是不允许出现import
, export
关键字的。一旦出现了,那么他就会被视为一个 npm 包或 UMD 库,就不再是全局变量的声明文件了。故当我们在书写一个全局变量的声明文件时,如果需要引用另一个库的类型,那么就必须用三斜线指令了28:
// types/jquery-plugin/index.d.ts
///
declare function foo(options: JQuery.AjaxSettings): string;
// src/index.ts
foo({});
三斜线指令的语法如上,///
后面使用xml
的格式添加了对 jquery 类型的依赖,这样就可以在声明文件中使用JQuery.AjaxSettings
类型了。
注意,三斜线指令必须放在文件的最顶端,三斜线指令的前面只允许出现单行或多行注释。
在另一个场景下,当我们需要依赖一个全局变量的声明文件时,由于全局变量不支持通过import
导入,当然也就必须使用三斜线指令来引入了29:
// types/node-plugin/index.d.ts
///
export function foo(p: NodeJS.Process): string;
// src/index.ts
import { foo } from 'node-plugin';
foo(global.process);
在上面的例子中,我们通过三斜线指引入了node
的类型,然后在声明文件中使用了 NodeJS.Process
这个类型。最后在使用到 foo
的时候,传入了 node
中的全局变量 process
。
由于引入的 node
中的类型都是全局变量的类型,它们是没有办法通过 import 来导入的,所以这种场景下也只能通过三斜线指令来引入了。
以上两种使用场景下,都是由于需要书写或需要依赖全局变量的声明文件,所以必须使用三斜线指令。在其他的一些不是必要使用三斜线指令的情况下,就都需要使用import
来导入。
当我们的全局变量的声明文件太大时,可以通过拆分为多个文件,然后在一个入口文件中将它们一一引入,来提高代码的可维护性。比如 jQuery
的声明文件就是这样的:
// node_modules/@types/jquery/index.d.ts
///
///
///
///
///
export = jQuery;
其中用到了 types
和path
两种不同的指令。它们的区别是:types 用于声明对另一个库的依赖,而 path
用于声明对另一个文件的依赖。
上例中,sizzle
是与 jquery
平行的另一个库,所以需要使用types="sizzle"
来声明对它的依赖。而其他的三斜线指令就是将 jquery 的声明拆分到不同的文件中了,然后在这个入口文件中使用path="foo"
将它们一一引入。
除了这两种三斜线指令之外,还有其他的三斜线指令,比如///
, ///
等,但它们都是废弃的语法,故这里就不介绍了,详情可见ts官网-三斜杠指令。
返回书写声明文件录
如果库的源码本身就是由 ts 写的,那么在使用 tsc
脚本将 ts 编译为 js 的时候,添加declaration
选项,就可以同时也生成.d.ts
声明文件了。
我们可以在命令行中添加 --declaration
(简写 -d),或者在tsconfig.json
中添加 declaration
选项。这里以 tsconfig.json
为例:
{
"compilerOptions": {
"module": "commonjs",
"outDir": "lib",
"declaration": true,
}
}
上例中我们添加了 outDir
选项,将 ts 文件的编译结果输出到lib
目录下,然后添加了declaration
选项,设置为true
,表示将会由 ts 文件自动生成 .d.ts
声明文件,也会输出到lib
目录下。
运行 tsc 之后,目录结构如下30:
/path/to/project
├── lib
| ├── bar
| | ├── index.d.ts
| | └── index.js
| ├── index.d.ts
| └── index.js
├── src
| ├── bar
| | └── index.ts
| └── index.ts
├── package.json
└── tsconfig.json
在这个例子中,src
目录下有两个ts
文件,分别是 src/index.ts
和 src/bar/index.ts
,它们被编译到lib
目录下的同时,也会生成对应的两个声明文件lib/index.d.ts
和 lib/bar/index.d.ts
。它们的内容分别是:
// src/index.ts
export * from './bar';
export default function foo() {
return 'foo';
}
// src/bar/index.ts
export function bar() {
return 'bar';
}
// lib/index.d.ts
export * from './bar';
export default function foo(): string;
// lib/bar/index.d.ts
export declare function bar(): string;
可见,自动生成的声明文件基本保持了源码的结构,而将具体实现去掉了,生成了对应的类型声明。
使用tsc
自动生成声明文件时,每个ts
文件都会对应一个.d.ts
声明文件。这样的好处是,使用方不仅可以在使用import foo from 'foo'
导入默认的模块时获得类型提示,还可以在使用import bar from 'foo/lib/bar'
导入一个子模块时,也获得对应的类型提示。
除了 declaration
选项之外,还有几个选项也与自动生成声明文件有关,这里只简单列举出来,不做详细演示了:
declarationDir
设置生成 .d.ts
文件的目录declarationMap
对每个 .d.ts
文件,都生成对应的.d.ts.map(sourcemap
)文件emitDeclarationOnly
仅生成 .d.ts
文件,不生成 .js
文件返回小节
当我们为一个库写好了声明文件之后,下一步就是将它发布出去了。
此时有两种方案:
@types
下这两种方案中优先选择第一种方案。保持声明文件与源码在一起,使用时就不需要额外增加单独的声明文件库的依赖了,而且也能保证声明文件的版本与源码的版本保持一致。
仅当我们在给别人的仓库添加类型声明文件,但原作者不愿意合并pull request
时,才需要使用第二种方案,将声明文件发布到@types
下。
返回发布
如果声明文件是通过tsc
自动生成的,那么无需做任何其他配置,只需要把编译好的文件也发布到npm
上,使用方就可以获取到类型提示了。
如果是手动写的声明文件,那么需要满足以下条件之一,才能被正确的识别:
package.json
中的 types
或 typings
字段指定一个类型声明文件地址index.d.ts
文件package.json
中的 main 字段指定的入口文件),编写一个同名不同后缀的.d.ts
文件第一种方式是给 package.json
中的 types
或typings
字段指定一个类型声明文件地址。比如
{
"name": "foo",
"version": "1.0.0",
"main": "lib/index.js",
"types": "foo.d.ts",
}
指定了types
为foo.d.ts
之后,导入此库的时候,就会去找 foo.d.ts
作为此库的类型声明文件了。
typings
与types
一样,只是另一种写法。
如果没有指定 types
或 typings
,那么就会在根目录下寻找 index.d.ts
文件,将它视为此库的类型声明文件。
如果没有找到 index.d.ts
文件,那么就会寻找入口文件(package.json
中的 main 字段指定的入口文件)是否存在对应同名不同后缀的 .d.ts
文件。
比如 package.json
是这样时:
{
"name": "foo",
"version": "1.0.0",
"main": "lib/index.js"
}
就会先识别 package.json
中是否存在 types
或 typings
字段。发现不存在,那么就会寻找是否存在 index.d.ts
文件。如果还是不存在,那么就会寻找是否存在 lib/index.d.ts
文件。假如说连 lib/index.d.ts
都不存在的话,就会被认为是一个没有提供类型声明文件的库了。
有的库为了支持导入子模块,比如 import bar from 'foo/lib/bar'
,就需要额外再编写一个类型声明文件 lib/bar.d.ts
或者 lib/bar/index.d.ts
,这与自动生成声明文件类似,一个库中同时包含了多个类型声明文件。
返回发布
如果我们是在给别人的仓库添加类型声明文件,但原作者不愿意合并 pull request
,那么就需要将声明文件发布到@types
下。
与普通的 npm 模块不同,@types
是统一由 DefinitelyTyped 管理的。要将声明文件发布到@types
下,就需要给 DefinitelyTyped 创建一个pull-request
,其中包含了类型声明文件,测试代码,以及 tsconfig.json
等。
pull-request 需要符合它们的规范,并且通过测试,才能被合并,稍后就会被自动发布到 @types
下。
在 DefinitelyTyped 中创建一个新的类型声明,需要用到一些工具,DefinitelyTyped 的文档中已经有了详细的介绍,这里就不赘述了,以官方文档为准。
如果大家有此类需求,可以参考下笔者提交的 pull-request 。
【上一章: 声明文件】 【下一章: 进阶】
【返回章节】 【返回目录】
JavaScript 中有很多内置对象,它们可以直接在 TypeScript 中当做定义好了的类型。
内置对象是指根据标准在全局作用域(Global)上存在的对象。这里的标准是指 ECMAScript 和其他环境(比如 DOM)的标准。
包含以下内容:
返回小节
ECMAScript 标准提供的内置对象有:
Boolean
、Error
、Date
、RegExp
等。
我们可以在 TypeScript 中将变量定义为这些类型:
let b: Boolean = new Boolean(1);
let e: Error = new Error('Error occurred');
let d: Date = new Date();
let r: RegExp = /[a-z]/;
更多的内置对象,可以查看 MDN 的文档。
而他们的定义文件,则在 TypeScript 核心库的定义文件中。
返回小节
DOM 和 BOM 提供的内置对象有:
Document
、HTMLElement
、Event
、NodeList
等。
TypeScript 中会经常用到这些类型:
let body: HTMLElement = document.body;
let allDiv: NodeList = document.querySelectorAll('div');
document.addEventListener('click', function(e: MouseEvent) {
// Do something
});
它们的定义文件同样在 TypeScript 核心库的定义文件中。
返回小节
TypeScript 核心库的定义文件中定义了所有浏览器环境需要用到的类型,并且是预置在 TypeScript 中的。
当你在使用一些常用的方法的时候,TypeScript 实际上已经帮你做了很多类型判断的工作了,比如:
Math.pow(10, '2');
// index.ts(1,14): error TS2345: Argument of type 'string' is not assignable to parameter of type 'number'.
上面的例子中,Math.pow
必须接受两个 number
类型的参数。事实上 Math.pow
的类型定义如下:
interface Math {
/**
* Returns the value of a base expression taken to a specified power.
* @param x The base value of the expression.
* @param y The exponent value of the expression.
*/
pow(x: number, y: number): number;
}
再举一个 DOM 中的例子:
document.addEventListener('click', function(e) {
console.log(e.targetCurrent);
});
// index.ts(2,17): error TS2339: Property 'targetCurrent' does not exist on type 'MouseEvent'.
上面的例子中,addEventListener
方法是在TypeScript
核心库中定义的:
interface Document extends Node, GlobalEventHandlers, NodeSelector, DocumentEvent {
addEventListener(type: string, listener: (ev: MouseEvent) => any, useCapture?: boolean): void;
}
所以 e 被推断成了 MouseEvent
,而 MouseEvent
是没有 targetCurrent
属性的,所以报错了。
注意,TypeScript 核心库的定义中不包含 Node.js 部分。
返回小节
Node.js 不是内置对象的一部分,如果想用 TypeScript 写 Node.js,则需要引入第三方声明文件:
npm install @types/node --save-dev
【上一章: 内置对象】 【下一章: 类型别名】
【返回目录】
本部分介绍一些高级的类型与技术,具体内容包括:
【上一章: 进阶】 【下一章: 字符串字面量类型】
【返回章节】 【返回目录】
类型别名用来给一个类型起个新名字。
type Name = string;
type NameResolver = () => string;
type NameOrResolver = Name | NameResolver;
function getName(n: NameOrResolver): Name {
if (typeof n === 'string') {
return n;
} else {
return n();
}
}
上例中,我们使用 type
创建类型别名。
类型别名常用于联合类型。
【上一章: 类型别名】 【下一章: 元组】
【返回章节】 【返回目录】
字符串字面量类型用来约束取值只能是某几个字符串中的一个。
type EventNames = 'click' | 'scroll' | 'mousemove';
function handleEvent(ele: Element, event: EventNames) {
// do something
}
handleEvent(document.getElementById('hello'), 'scroll'); // 没问题
handleEvent(document.getElementById('world'), 'dbclick'); // 报错,event 不能为 'dbclick'
// index.ts(7,47): error TS2345: Argument of type '"dbclick"' is not assignable to parameter of type 'EventNames'.
上例中,我们使用type
定了一个字符串字面量类型 EventNames
,它只能取三种字符串中的一种。
注意,类型别名与字符串字面量类型都是使用type
进行定义。
【上一章: 字符串字面量类型】 【下一章: 枚举】
【返回章节】 【返回目录】
数组合并了相同类型的对象,而元组(Tuple)合并了不同类型的对象。
元组起源于函数编程语言(如 F#),这些语言中会频繁使用元组。
定义一对值分别为 string
和number
的元组:
let tom: [string, number] = ['Tom', 25];
当赋值或访问一个已知索引的元素时,会得到正确的类型:
let tom: [string, number];
tom[0] = 'Tom';
tom[1] = 25;
tom[0].slice(1);
tom[1].toFixed(2);
也可以只赋值其中一项:
let tom: [string, number];
tom[0] = 'Tom';
但是当直接对元组类型的变量进行初始化或者赋值的时候,需要提供所有元组类型中指定的项。
let tom: [string, number];
tom = ['Tom', 25];
let tom: [string, number];
tom = ['Tom'];
// Property '1' is missing in type '[string]' but required in type '[string, number]'.
当添加越界的元素时,它的类型会被限制为元组中每个类型的联合类型:
let tom: [string, number];
tom = ['Tom', 25];
tom.push('male');
tom.push(true);
// Argument of type 'true' is not assignable to parameter of type 'string | number'.
【上一章: 元组】 【下一章: 类】
【返回章节】 【返回目录】
枚举(Enum)类型用于取值被限定在一定范围内的场景,比如一周只能有七天,颜色限定为红绿蓝等。
包含以下内容:
返回小节
枚举使用 enum
关键字来定义:
enum Days {Sun, Mon, Tue, Wed, Thu, Fri, Sat};
枚举成员会被赋值为从 0 开始递增的数字,同时也会对枚举值到枚举名进行反向映射:
enum Days {Sun, Mon, Tue, Wed, Thu, Fri, Sat};
console.log(Days["Sun"] === 0); // true
console.log(Days["Mon"] === 1); // true
console.log(Days["Tue"] === 2); // true
console.log(Days["Sat"] === 6); // true
console.log(Days[0] === "Sun"); // true
console.log(Days[1] === "Mon"); // true
console.log(Days[2] === "Tue"); // true
console.log(Days[6] === "Sat"); // true
事实上,上面的例子会被编译为:
var Days;
(function (Days) {
Days[Days["Sun"] = 0] = "Sun";
Days[Days["Mon"] = 1] = "Mon";
Days[Days["Tue"] = 2] = "Tue";
Days[Days["Wed"] = 3] = "Wed";
Days[Days["Thu"] = 4] = "Thu";
Days[Days["Fri"] = 5] = "Fri";
Days[Days["Sat"] = 6] = "Sat";
})(Days || (Days = {}));
返回小节
我们也可以给枚举项手动赋值:
enum Days {Sun = 7, Mon = 1, Tue, Wed, Thu, Fri, Sat};
console.log(Days["Sun"] === 7); // true
console.log(Days["Mon"] === 1); // true
console.log(Days["Tue"] === 2); // true
console.log(Days["Sat"] === 6); // true
上面的例子中,未手动赋值的枚举项会接着上一个枚举项递增。
如果未手动赋值的枚举项与手动赋值的重复了,TypeScript 是不会察觉到这一点的:
enum Days {Sun = 3, Mon = 1, Tue, Wed, Thu, Fri, Sat};
console.log(Days["Sun"] === 3); // true
console.log(Days["Wed"] === 3); // true
console.log(Days[3] === "Sun"); // false
console.log(Days[3] === "Wed"); // true
上面的例子中,递增到3
的时候与前面的 Sun 的取值重复了,但是 TypeScript
并没有报错,导致 Days[3]
的值先是 "Sun"
,而后又被 "Wed"
覆盖了。编译的结果是:
var Days;
(function (Days) {
Days[Days["Sun"] = 3] = "Sun";
Days[Days["Mon"] = 1] = "Mon";
Days[Days["Tue"] = 2] = "Tue";
Days[Days["Wed"] = 3] = "Wed";
Days[Days["Thu"] = 4] = "Thu";
Days[Days["Fri"] = 5] = "Fri";
Days[Days["Sat"] = 6] = "Sat";
})(Days || (Days = {}));
所以使用的时候需要注意,最好不要出现这种覆盖的情况。
手动赋值的枚举项可以不是数字,此时需要使用类型断言来让 tsc 无视类型检查 (编译出的 js 仍然是可用的)
enum Days {Sun = 7, Mon, Tue, Wed, Thu, Fri, Sat = <any>"S"};
var Days;
(function (Days) {
Days[Days["Sun"] = 7] = "Sun";
Days[Days["Mon"] = 8] = "Mon";
Days[Days["Tue"] = 9] = "Tue";
Days[Days["Wed"] = 10] = "Wed";
Days[Days["Thu"] = 11] = "Thu";
Days[Days["Fri"] = 12] = "Fri";
Days[Days["Sat"] = "S"] = "Sat";
})(Days || (Days = {}));
当然,手动赋值的枚举项也可以为小数或负数,此时后续未手动赋值的项的递增步长仍为1
:
enum Days {Sun = 7, Mon = 1.5, Tue, Wed, Thu, Fri, Sat};
console.log(Days["Sun"] === 7); // true
console.log(Days["Mon"] === 1.5); // true
console.log(Days["Tue"] === 2.5); // true
console.log(Days["Sat"] === 6.5); // true
返回小节
枚举项有两种类型:常数项(constant member)和计算所得项(computed member)。
前面我们所举的例子都是常数项,一个典型的计算所得项的例子
enum Color {Red, Green, Blue = "blue".length};
上面的例子中,·“blue”.length ·就是一个计算所得项。
上面的例子不会报错,但是如果紧接在计算所得项后面的是未手动赋值的项,那么它就会因为无法获得初始值而报错:
enum Color {Red = "red".length, Green, Blue};
// index.ts(1,33): error TS1061: Enum member must have initializer.
// index.ts(1,40): error TS1061: Enum member must have initializer.
下面是常数项和计算所得项的完整定义,部分引用自中文手册 - 枚举:
当满足以下条件时,枚举成员被当作是常数:
1
。但第一个枚举元素是个例外。如果它没有初始化方法,那么它的初始值为 0
。+, -, ~
一元运算符应用于常数枚举表达式+, -, *, /, %, <<, >>, >>>, &, |, ^
二元运算符,常数枚举表达式做为其一个操作对象。若常数枚举表达式求值后为 NaN 或 Infinity,则会在编译阶段报错所有其它情况的枚举成员被当作是需要计算得出的值。
返回小节
常数枚举是使用 const enum
定义的枚举类型:
const enum Directions {
Up,
Down,
Left,
Right
}
let directions = [Directions.Up, Directions.Down, Directions.Left, Directions.Right];
常数枚举与普通枚举的区别是,它会在编译阶段被删除,并且不能包含计算成员。
上例的编译结果是:
var directions = [0 /* Up */, 1 /* Down */, 2 /* Left */, 3 /* Right */];
假如包含了计算成员,则会在编译阶段报错:
const enum Color {Red, Green, Blue = "blue".length};
// index.ts(1,38): error TS2474: In 'const' enum declarations member initializer must be constant expression.
返回小节
外部枚举(Ambient Enums)是使用 declare enum
定义的枚举类型:
declare enum Directions {
Up,
Down,
Left,
Right
}
let directions = [Directions.Up, Directions.Down, Directions.Left, Directions.Right];
之前提到过,declare
定义的类型只会用于编译时的检查,编译结果中会被删除。
上例的编译结果是:
var directions = [Directions.Up, Directions.Down, Directions.Left, Directions.Right];
外部枚举与声明语句一样,常出现在声明文件中。
同时使用 declare
和 onst
也是可以的:
declare const enum Directions {
Up,
Down,
Left,
Right
}
let directions = [Directions.Up, Directions.Down, Directions.Left, Directions.Right];
编译结果:
var directions = [0 /* Up */, 1 /* Down */, 2 /* Left */, 3 /* Right */];
TypeScript 的枚举类型的概念来源于 C#。
【上一章: 枚举】 【下一章: 类与接口】
【返回章节】 【返回目录】
传统方法中,JavaScript 通过构造函数实现类的概念,通过原型链实现继承。而在 ES6 中,我们终于迎来了 class
。
TypeScript 除了实现了所有 ES6 中的类的功能以外,还添加了一些新的用法。
这一节主要介绍类的用法,下一节再介绍如何定义类的类型。
包含以下内容
返回小节
虽然 JavaScript 中有类的概念,但是可能大多数 JavaScript 程序员并不是非常熟悉类,这里对类相关的概念做一个简单的介绍。
返回小节
下面我们先回顾一下 ES6 中类的用法,更详细的介绍可以参考 ECMAScript 6 入门 - Class。
返回上级
使用 class
定义类,使用 constructor
定义构造函数。
通过 new
生成新实例的时候,会自动调用构造函数。
class Animal {
constructor(name) {
this.name = name;
}
sayHi() {
return `My name is ${this.name}`;
}
}
let a = new Animal('Jack');
console.log(a.sayHi()); // My name is Jack
返回上级
使用 extends 关键字实现继承,子类中使用 super 关键字来调用父类的构造函数和方法。
class Cat extends Animal {
constructor(name) {
super(name); // 调用父类的 constructor(name)
console.log(this.name);
}
sayHi() {
return 'Meow, ' + super.sayHi(); // 调用父类的 sayHi()
}
}
let c = new Cat('Tom'); // Tom
console.log(c.sayHi()); // Meow, My name is Tom
返回上级
使用 getter 和 setter 可以改变属性的赋值和读取行为:
class Animal {
constructor(name) {
this.name = name;
}
get name() {
return 'Jack';
}
set name(value) {
console.log('setter: ' + value);
}
}
let a = new Animal('Kitty'); // setter: Kitty
a.name = 'Tom'; // setter: Tom
console.log(a.name); // Jack
返回上级
使用static
修饰符修饰的方法称为静态方法,它们不需要实例化,而是直接通过类来调用:
class Animal {
static isAnimal(a) {
return a instanceof Animal;
}
}
let a = new Animal('Jack');
Animal.isAnimal(a); // true
a.isAnimal(a); // TypeError: a.isAnimal is not a function
返回小节
ES7 中有一些关于类的提案,TypeScript 也实现了它们,这里做一个简单的介绍。
返回上级
ES6 中实例的属性只能通过构造函数中的 this.xxx
来定义,ES7 提案中可以直接在类里面定义:
class Animal {
name = 'Jack';
constructor() {
// ...
}
}
let a = new Animal();
console.log(a.name); // Jack
返回上级
ES7 提案中,可以使用static
定义一个静态属性:
class Animal {
static num = 42;
constructor() {
// ...
}
}
console.log(Animal.num); // 42
返回小节
返回上级
TypeScript 可以使用三种访问修饰符(Access Modifiers),分别是 public、private 和 protected。
下面举一些例子:
class Animal {
public name;
public constructor(name) {
this.name = name;
}
}
let a = new Animal('Jack');
console.log(a.name); // Jack
a.name = 'Tom';
console.log(a.name); // Tom
上面的例子中,name 被设置为了 public,所以直接访问实例的 name 属性是允许的。
很多时候,我们希望有的属性是无法直接存取的,这时候就可以用 private 了:
class Animal {
private name;
public constructor(name) {
this.name = name;
}
}
let a = new Animal('Jack');
console.log(a.name); // Jack
a.name = 'Tom';
// index.ts(9,13): error TS2341: Property 'name' is private and only accessible within class 'Animal'.
// index.ts(10,1): error TS2341: Property 'name' is private and only accessible within class 'Animal'.
需要注意的是,TypeScript 编译之后的代码中,并没有限制 private 属性在外部的可访问性。
上面的例子编译后的代码是:
var Animal = (function () {
function Animal(name) {
this.name = name;
}
return Animal;
}());
var a = new Animal('Jack');
console.log(a.name);
a.name = 'Tom';
使用 private 修饰的属性或方法,在子类中也是不允许访问的:
class Animal {
private name;
public constructor(name) {
this.name = name;
}
}
class Cat extends Animal {
constructor(name) {
super(name);
console.log(this.name);
}
}
// index.ts(11,17): error TS2341: Property 'name' is private and only accessible within class 'Animal'.
而如果是用 protected 修饰,则允许在子类中访问:
class Animal {
protected name;
public constructor(name) {
this.name = name;
}
}
class Cat extends Animal {
constructor(name) {
super(name);
console.log(this.name);
}
}
当构造函数修饰为 private 时,该类不允许被继承或者实例化:
class Animal {
public name;
private constructor (name) {
this.name = name;
}
}
class Cat extends Animal {
constructor (name) {
super(name);
}
}
let a = new Animal('Jack');
// index.ts(7,19): TS2675: Cannot extend a class 'Animal'. Class constructor is marked as private.
// index.ts(13,9): TS2673: Constructor of class 'Animal' is private and only accessible within the class declaration.
当构造函数修饰为 protected 时,该类只允许被继承:
class Animal {
public name;
protected constructor (name) {
this.name = name;
}
}
class Cat extends Animal {
constructor (name) {
super(name);
}
}
let a = new Animal('Jack');
// index.ts(13,9): TS2674: Constructor of class 'Animal' is protected and only accessible within the class declaration.
修饰符还可以使用在构造函数参数中,等同于类中定义该属性,使代码更简洁。
class Animal {
// public name: string;
public constructor (public name) {
this.name = name;
}
}
返回上级
只读属性关键字,只允许出现在属性声明或索引签名中。
class Animal {
readonly name;
public constructor(name) {
this.name = name;
}
}
let a = new Animal('Jack');
console.log(a.name); // Jack
a.name = 'Tom';
// index.ts(10,3): TS2540: Cannot assign to 'name' because it is a read-only property.
注意如果 readonly 和其他访问修饰符同时存在的话,需要写在其后面。
class Animal {
// public readonly name;
public constructor(public readonly name) {
this.name = name;
}
}
返回上级
abstract
用于定义抽象类和其中的抽象方法。
什么是抽象类?
首先,抽象类是不允许被实例化的:
abstract class Animal {
public name;
public constructor(name) {
this.name = name;
}
public abstract sayHi();
}
let a = new Animal('Jack');
// index.ts(9,11): error TS2511: Cannot create an instance of the abstract class 'Animal'.
上面的例子中,我们定义了一个抽象类Animal
,并且定义了一个抽象方法 sayHi
。在实例化抽象类的时候报错了。
其次,抽象类中的抽象方法必须被子类实现:
abstract class Animal {
public name;
public constructor(name) {
this.name = name;
}
public abstract sayHi();
}
class Cat extends Animal {
public eat() {
console.log(`${this.name} is eating.`);
}
}
let cat = new Cat('Tom');
// index.ts(9,7): error TS2515: Non-abstract class 'Cat' does not implement inherited abstract member 'sayHi' from class 'Animal'.
上面的例子中,我们定义了一个类 Cat 继承了抽象类 Animal,但是没有实现抽象方法 sayHi,所以编译报错了。
下面是一个正确使用抽象类的例子:
abstract class Animal {
public name;
public constructor(name) {
this.name = name;
}
public abstract sayHi();
}
class Cat extends Animal {
public sayHi() {
console.log(`Meow, My name is ${this.name}`);
}
}
let cat = new Cat('Tom');
上面的例子中,我们实现了抽象方法 sayHi,编译通过了。
需要注意的是,即使是抽象方法,TypeScript 的编译结果中,仍然会存在这个类,上面的代码的编译结果是:
var __extends = (this && this.__extends) || function (d, b) {
for (var p in b) if (b.hasOwnProperty(p)) d[p] = b[p];
function __() { this.constructor = d; }
d.prototype = b === null ? Object.create(b) : (__.prototype = b.prototype, new __());
};
var Animal = (function () {
function Animal(name) {
this.name = name;
}
return Animal;
}());
var Cat = (function (_super) {
__extends(Cat, _super);
function Cat() {
_super.apply(this, arguments);
}
Cat.prototype.sayHi = function () {
console.log('Meow, My name is ' + this.name);
};
return Cat;
}(Animal));
var cat = new Cat('Tom');
返回小节
给类加上 TypeScript 的类型很简单,与接口类似:
class Animal {
name: string;
constructor(name: string) {
this.name = name;
}
sayHi(): string {
return `My name is ${this.name}`;
}
}
let a: Animal = new Animal('Jack');
console.log(a.sayHi()); // My name is Jack
【上一章: 类】 【下一章: 泛型】
【返回章节】 【返回目录】
之前学习过 对象的类型——接口,接口(Interfaces)可以用于对「对象的形状(Shape)」进行描述。
这一章主要介绍接口的另一个用途,对类的一部分行为进行抽象。
包含以下内容:
返回小节
实现(implements)是面向对象中的一个重要概念。一般来讲,一个类只能继承自另一个类,有时候不同类之间可以有一些共有的特性,这时候就可以把特性提取成接口(interfaces),用 implements 关键字来实现。这个特性大大提高了面向对象的灵活性。
举例来说,门是一个类,防盗门是门的子类。如果防盗门有一个报警器的功能,我们可以简单的给防盗门添加一个报警方法。这时候如果有另一个类,车,也有报警器的功能,就可以考虑把报警器提取出来,作为一个接口,防盗门和车都去实现它:
interface Alarm {
alert();
}
class Door {
}
class SecurityDoor extends Door implements Alarm {
alert() {
console.log('SecurityDoor alert');
}
}
class Car implements Alarm {
alert() {
console.log('Car alert');
}
}
一个类可以实现多个接口:
interface Alarm {
alert();
}
interface Light {
lightOn();
lightOff();
}
class Car implements Alarm, Light {
alert() {
console.log('Car alert');
}
lightOn() {
console.log('Car light on');
}
lightOff() {
console.log('Car light off');
}
}
上例中,Car
实现了Alarm
和Light
接口,既能报警,也能开关车灯。
返回小节
接口与接口之间可以是继承关系:
interface Alarm {
alert();
}
interface LightableAlarm extends Alarm {
lightOn();
lightOff();
}
上例中,我们使用 extends
使LightableAlarm
继承 Alarm
。
返回小节
接口也可以继承类:
class Point {
x: number;
y: number;
}
interface Point3d extends Point {
z: number;
}
let point3d: Point3d = {x: 1, y: 2, z: 3};
返回小节
之前学习过 函数的类型,可以使用接口的方式来定义一个函数需要符合的形状:
interface SearchFunc {
(source: string, subString: string): boolean;
}
let mySearch: SearchFunc;
mySearch = function(source: string, subString: string) {
return source.search(subString) !== -1;
}
有时候,一个函数还可以有自己的属性和方法:
interface Counter {
(start: number): string;
interval: number;
reset(): void;
}
function getCounter(): Counter {
let counter = <Counter>function (start: number) { };
counter.interval = 123;
counter.reset = function () { };
return counter;
}
let c = getCounter();
c(10);
c.reset();
c.interval = 5.0;
【上一章: 类与接口】 【下一章: 声明合并】
【返回章节】 【返回目录】
泛型(Generics)是指在定义函数、接口或类的时候,不预先指定具体的类型,而在使用的时候再指定类型的一种特性。
包含以下内容:
返回小节
首先,我们来实现一个函数 createArray
,它可以创建一个指定长度的数组,同时将每一项都填充一个默认值:
function createArray(length: number, value: any): Array<any> {
let result = [];
for (let i = 0; i < length; i++) {
result[i] = value;
}
return result;
}
createArray(3, 'x'); // ['x', 'x', 'x']
上例中,我们使用了之前提到过的数组泛型来定义返回值的类型。
这段代码编译不会报错,但是一个显而易见的缺陷是,它并没有准确的定义返回值的类型:
Array 允许数组的每一项都为任意类型。但是我们预期的是,数组中每一项都应该是输入的 value 的类型。
这时候,泛型就派上用场了:
function createArray<T>(length: number, value: T): Array<T> {
let result: T[] = [];
for (let i = 0; i < length; i++) {
result[i] = value;
}
return result;
}
createArray<string>(3, 'x'); // ['x', 'x', 'x']
上例中,我们在函数名后添加了
,其中T
用来指代任意输入的类型,在后面的输入 value: T
和输出 Array
中即可使用了。
接着在调用的时候,可以指定它具体的类型为string
。当然,也可以不手动指定,而让类型推论自动推算出来:
function createArray<T>(length: number, value: T): Array<T> {
let result: T[] = [];
for (let i = 0; i < length; i++) {
result[i] = value;
}
return result;
}
createArray(3, 'x'); // ['x', 'x', 'x']
返回小节
定义泛型的时候,可以一次定义多个类型参数:
function swap<T, U>(tuple: [T, U]): [U, T] {
return [tuple[1], tuple[0]];
}
swap([7, 'seven']); // ['seven', 7]
返回小节
在函数内部使用泛型变量的时候,由于事先不知道它是哪种类型,所以不能随意的操作它的属性或方法:
function loggingIdentity<T>(arg: T): T {
console.log(arg.length);
return arg;
}
// index.ts(2,19): error TS2339: Property 'length' does not exist on type 'T'.
上例中,泛型T
不一定包含属性length
,所以编译的时候报错了。
这时,我们可以对泛型进行约束,只允许这个函数传入那些包含 length
属性的变量。这就是泛型约束:
interface Lengthwise {
length: number;
}
function loggingIdentity<T extends Lengthwise>(arg: T): T {
console.log(arg.length);
return arg;
}
上例中,我们使用了 extends
约束了泛型T
必须符合接口 Lengthwise
的形状,也就是必须包含length
属性。
此时如果调用 loggingIdentity
的时候,传入的arg
不包含 length
,那么在编译阶段就会报错了:
interface Lengthwise {
length: number;
}
function loggingIdentity<T extends Lengthwise>(arg: T): T {
console.log(arg.length);
return arg;
}
loggingIdentity(7);
// index.ts(10,17): error TS2345: Argument of type '7' is not assignable to parameter of type 'Lengthwise'.
多个类型参数之间也可以互相约束:
function copyFields<T extends U, U>(target: T, source: U): T {
for (let id in source) {
target[id] = (<T>source)[id];
}
return target;
}
let x = { a: 1, b: 2, c: 3, d: 4 };
copyFields(x, { b: 10, d: 20 });
上例中,我们使用了两个类型参数,其中要求T
继承U
,这样就保证了 U
上不会出现T
中不存在的字段。
返回小节
之前学习过,可以使用接口的方式来定义一个函数需要符合的形状:
interface SearchFunc {
(source: string, subString: string): boolean;
}
let mySearch: SearchFunc;
mySearch = function(source: string, subString: string) {
return source.search(subString) !== -1;
}
当然也可以使用含有泛型的接口来定义函数的形状:
interface CreateArrayFunc {
<T>(length: number, value: T): Array<T>;
}
let createArray: CreateArrayFunc;
createArray = function<T>(length: number, value: T): Array<T> {
let result: T[] = [];
for (let i = 0; i < length; i++) {
result[i] = value;
}
return result;
}
createArray(3, 'x'); // ['x', 'x', 'x']
进一步,我们可以把泛型参数提前到接口名上:
interface CreateArrayFunc<T> {
(length: number, value: T): Array<T>;
}
let createArray: CreateArrayFunc<any>;
createArray = function<T>(length: number, value: T): Array<T> {
let result: T[] = [];
for (let i = 0; i < length; i++) {
result[i] = value;
}
return result;
}
createArray(3, 'x'); // ['x', 'x', 'x']
注意,此时在使用泛型接口的时候,需要定义泛型的类型。
返回小节
与泛型接口类似,泛型也可以用于类的类型定义中:
class GenericNumber<T> {
zeroValue: T;
add: (x: T, y: T) => T;
}
let myGenericNumber = new GenericNumber<number>();
myGenericNumber.zeroValue = 0;
myGenericNumber.add = function(x, y) { return x + y; };
返回小节
在 TypeScript 2.3 以后,我们可以为泛型中的类型参数指定默认类型。当使用泛型时没有在代码中直接指定类型参数,从实际值参数中也无法推测出时,这个默认类型就会起作用。
function createArray<T = string>(length: number, value: T): Array<T> {
let result: T[] = [];
for (let i = 0; i < length; i++) {
result[i] = value;
}
return result;
}
【上一章: 泛型】 【下一章: 扩展阅读】
【返回章节】 【返回目录】
如果定义了两个相同名字的函数、接口或类,那么它们会合并成一个类型:
包含以下内容:
返回小节
之前学习过,我们可以使用重载定义多个函数类型:
function reverse(x: number): number;
function reverse(x: string): string;
function reverse(x: number | string): number | string {
if (typeof x === 'number') {
return Number(x.toString().split('').reverse().join(''));
} else if (typeof x === 'string') {
return x.split('').reverse().join('');
}
}
返回小节
接口中的属性在合并时会简单的合并到一个接口中:
interface Alarm {
price: number;
}
interface Alarm {
weight: number;
}
相当于
interface Alarm {
price: number;
weight: number;
}
注意,合并的属性的类型必须是唯一的:
interface Alarm {
price: number;
}
interface Alarm {
price: number; // 虽然重复了,但是类型都是 `number`,所以不会报错
weight: number;
}
interface Alarm {
price: number;
}
interface Alarm {
price: string; // 类型不一致,会报错
weight: number;
}
// index.ts(5,3): error TS2403: Subsequent variable declarations must have the same type. Variable 'price' must be of type 'number', but here has type 'string'.
接口中方法的合并,与函数的合并一样:
interface Alarm {
price: number;
alert(s: string): string;
}
interface Alarm {
weight: number;
alert(s: string, n: number): string;
}
相当于:
interface Alarm {
price: number;
weight: number;
alert(s: string): string;
alert(s: string, n: number): string;
}
返回小节
类的合并与接口的合并规则一致。
【上一章: 声明合并】 【下一章: 工程】
【返回章节】 【返回目录】
此处记录了官方手册(中文版)中包含,但是本书未涉及的概念。
我认为它们是一些不重要或者不属于 TypeScript 的概念,所以这里只给出一个简单的释义,详细内容可以点击链接深入理解。
【上一章: 扩展阅读】 【下一章: 代码检查】
【返回目录】
掌握了 TypeScript 的语法就像学会了砌墙的工艺。
我们学习 TypeScript 的目的不是为了造一间小茅屋,而是为了造高楼大厦,这也正是 TypeScript 的类型系统带来的优势。
那么一项大工程应该如何开展呢?本部分的内容就会介绍 TypeScript 工程化的最佳实践,具体内容包括:
【上一章: 工程】 【下一章: 编译选项】
【返回章节】 【返回目录】
2019 年 1 月,TypeScirpt 官方决定全面采用 ESLint 作为代码检查的工具,并创建了一个新项目 typescript-eslint,提供了 TypeScript 文件的解析器 @typescript-eslint/parser 和相关的配置选项 @typescript-eslint/eslint-plugin 等。而之前的两个 lint 解决方案都将弃用:
综上所述,目前以及将来的 TypeScript 的代码检查方案就是 typescript-eslint。
代码检查主要是用来发现代码错误、统一代码风格。
在 JavaScript 项目中,我们一般使用 ESLint 来进行代码检查,它通过插件化的特性极大的丰富了适用范围,搭配 typescript-eslint 之后,甚至可以用来检查 TypeScript 代码。
有人会觉得,JavaScript 非常灵活,所以需要代码检查。而 TypeScript 已经能够在编译阶段检查出很多问题了,为什么还需要代码检查呢?
因为 TypeScript 关注的重心是类型的检查,而不是代码风格。当团队的人员越来越多时,同样的逻辑不同的人写出来可能会有很大的区别:
这些问题 TypeScript 不会关注,但是却影响到多人协作开发时的效率、代码的可理解性以及可维护性。
下面来看一个具体的例子:
var myName = 'Tom';
console.log(`My name is ${myNane}`);
console.log(`My name is ${myName.toStrng()}`);
以上代码你能看出有什么错误吗?
分别用 tsc 编译和 eslint 检查后,报错信息如下:
let myName = 'Tom';
// eslint 报错信息:
// Unexpected var, use let or const instead.eslint(no-var)
console.log(`My name is ${myNane}`);
// tsc 报错信息:
// Cannot find name 'myNane'. Did you mean 'myName'?
// eslint 报错信息:
// 'myNane' is not defined.eslint(no-undef)
console.log(`My name is ${myName.toStrng()}`);
// tsc 报错信息:
// Property 'toStrng' does not exist on type 'string'. Did you mean 'toString'?
上例中,我们使用了var
来定义一个变量,但其实ES6
中有更先进的语法 let
和 const
,此时就可以通过 eslint
检查出来,提示我们应该使用 let
或 const
而不是var
。
对于未定义的变量 myNane
,tsc
和 eslint
都可以检查出来。
由于 eslint 无法识别myName
存在哪些方法,所以对于拼写错误的toString
没有检查出来。
由此可见,eslint
能够发现出一些 tsc
不会关心的错误,检查出一些潜在的问题,所以代码检查还是非常重要的。
ESLint 可以安装在当前项目中或全局环境下,因为代码检查是项目的重要组成部分,所以我们一般会将它安装在当前项目中。可以运行下面的脚本来安装:
npm install --save-dev eslint
由于 ESLint 默认使用 Espree 进行语法解析,无法识别 TypeScript 的一些语法,故我们需要安装 @typescript-eslint/parser,替代掉默认的解析器,别忘了同时安装 typescript:
npm install --save-dev typescript @typescript-eslint/parser
接下来需要安装对应的插件 @typescript-eslint/eslint-plugin 它作为 eslint 默认规则的补充,提供了一些额外的适用于 ts 语法的规则。
npm install --save-dev @typescript-eslint/eslint-plugin
ESLint
需要一个配置文件来决定对哪些规则进行检查,配置文件的名称一般是 .eslintrc.js
或 .eslintrc.json。
当运行 ESLint
的时候检查一个文件的时候,它会首先尝试读取该文件的目录下的配置文件,然后再一级一级往上查找,将所找到的配置合并起来,作为当前被检查文件的配置。
我们在项目的根目录下创建一个 .eslintrc.js
,内容如下:
module.exports = {
parser: '@typescript-eslint/parser',
plugins: ['@typescript-eslint'],
rules: {
// 禁止使用 var
'no-var': "error",
// 优先使用 interface 而不是 type
'@typescript-eslint/consistent-type-definitions': [
"error",
"interface"
]
}
}
以上配置中,我们指定了两个规则,其中 no-var 是 ESLint 原生的规则,@typescript-eslint/consistent-type-definitions
是 @typescript-eslint/eslint-plugin
新增的规则。
规则的取值一般是一个数组(上例中的 @typescript-eslint/consistent-type-definitions
),其中第一项是off
、warn
或 error
中的一个,表示关闭、警告和报错。后面的项都是该规则的其他配置。
如果没有其他配置的话,则可以将规则的取值简写为数组中的第一项(上例中的 no-var)。
关闭、警告和报错的含义如下:
创建了配置文件之后,我们来创建一个 ts 文件看看是否能用 ESLint 去检查它。
创建一个新文件 index.ts
,将以下内容复制进去:
var myName = 'Tom';
type Foo = {};
然后执行以下命令:
./node_modules/.bin/eslint index.ts
则会得到如下报错信息:
/path/to/index.ts
1:1 error Unexpected var, use let or const instead no-var
3:6 error Use an `interface` instead of a `type` @typescript-eslint/consistent-type-definitions
✖ 2 problems (2 errors, 0 warnings)
2 errors and 0 warnings potentially fixable with the `--fix` option.
上面的结果显示,刚刚配置的两个规则都生效了:禁止使用var
;优先使用 interface
而不是 type
。
需要注意的是,我们使用的是 /node_modules/.bin/eslint
,而不是全局的 eslint
脚本,这是因为代码检查是项目的重要组成部分,所以我们一般会将它安装在当前项目中。
可是每次执行这么长一段脚本颇有不便,我们可以通过在package.json
中添加一个 script
来创建一个 npm script
来简化这个步骤:
{
"scripts": {
"eslint": "eslint index.ts"
}
}
这时只需执行npm run eslint
即可。
我们的项目源文件一般是放在 src
目录下,所以需要将 package.json
中的 eslint
脚本改为对一个目录进行检查。由于 eslint 默认不会检查 .ts 后缀的文件,所以需要加上参数 --ext .ts
:
{
"scripts": {
"eslint": "eslint src --ext .ts"
}
}
此时执行 npm run eslint
即会检查src
目录下的所有 .ts
后缀的文件。
在编辑器中集成 ESLint 检查,可以在开发过程中就发现错误,甚至可以在保存时自动修复错误,极大的增加了开发效率。
要在 VSCode 中集成 ESLint 检查,我们需要先安装 ESLint 插件,点击「扩展」按钮,搜索 ESLint,然后安装即可。
VSCode 中的 ESLint 插件默认是不会检查 .ts 后缀的,需要在「文件 => 首选项 => 设置 => 工作区」中(也可以在项目更目录下创建一个配置文件 .vscode/settings.json
),添加以下配置:
{
"eslint.validate": [
"javascript",
"javascriptreact",
"typescript"
],
"typescript.tsdk": "node_modules/typescript/lib"
}
这时再打开一个 .ts
文件,将鼠标移到红色提示处,即可看到这样的报错信息了:
我们还可以开启保存时自动修复的功能,通过配置:
{
"eslint.autoFixOnSave": true,
"eslint.validate": [
"javascript",
"javascriptreact",
{
"language": "typescript",
"autoFix": true
},
],
"typescript.tsdk": "node_modules/typescript/lib"
}
就可以在保存文件后,自动修复为:
let myName = 'Tom';
interface Foo {}
ESLint 包含了一些代码格式的检查,比如空格、分号等。但前端社区中有一个更先进的工具可以用来格式化代码,那就是 Prettier。
Prettier 聚焦于代码的格式化,通过语法分析,重新整理代码的格式,让所有人的代码都保持同样的风格。
首先需要安装 Prettier
npm install --save-dev prettier
然后创建一个 prettier.config.js
文件,里面包含 Prettier 的配置项。Prettier 的配置项很少,这里我推荐大家一个配置规则,作为参考:
// prettier.config.js or .prettierrc.js
module.exports = {
// 一行最多 100 字符
printWidth: 100,
// 使用 4 个空格缩进
tabWidth: 4,
// 不使用缩进符,而使用空格
useTabs: false,
// 行尾需要有分号
semi: true,
// 使用单引号
singleQuote: true,
// 对象的 key 仅在必要时用引号
quoteProps: 'as-needed',
// jsx 不使用单引号,而使用双引号
jsxSingleQuote: false,
// 末尾不需要逗号
trailingComma: 'none',
// 大括号内的首尾需要空格
bracketSpacing: true,
// jsx 标签的反尖括号需要换行
jsxBracketSameLine: false,
// 箭头函数,只有一个参数的时候,也需要括号
arrowParens: 'always',
// 每个文件格式化的范围是文件的全部内容
rangeStart: 0,
rangeEnd: Infinity,
// 不需要写文件开头的 @prettier
requirePragma: false,
// 不需要自动在文件开头插入 @prettier
insertPragma: false,
// 使用默认的折行标准
proseWrap: 'preserve',
// 根据显示样式决定 html 要不要折行
htmlWhitespaceSensitivity: 'css',
// 换行符使用 lf
endOfLine: 'lf'
};
接下来安装 VSCode 中的 Prettier 插件,然后修改 .vscode/settings.json
:
{
"files.eol": "\n",
"editor.tabSize": 4,
"editor.formatOnSave": true,
"editor.defaultFormatter": "esbenp.prettier-vscode",
"eslint.autoFixOnSave": true,
"eslint.validate": [
"javascript",
"javascriptreact",
{
"language": "typescript",
"autoFix": true
}
],
"typescript.tsdk": "node_modules/typescript/lib"
}
这样就实现了保存文件时自动格式化并且自动修复 ESLint 错误。
需要注意的是,由于 ESLint 也可以检查一些代码格式的问题,所以在和 Prettier 配合使用时,我们一般会把 ESLint 中的代码格式相关的规则禁用掉,否则就会有冲突了。
ESLint 原生的规则和 @typescript-eslint/eslint-plugin
的规则太多了,而且原生的规则有一些在 TypeScript 中支持的不好,需要禁用掉。
这里我推荐使用 AlloyTeam ESLint 规则中的 TypeScript 版本,它已经为我们提供了一套完善的配置规则,并且与 Prettier 是完全兼容的(eslint-config-alloy 不包含任何代码格式的规则,代码格式的问题交给更专业的 Prettier 去处理)。
安装:
npm install --save-dev eslint typescript @typescript-eslint/parser @typescript-eslint/eslint-plugin eslint-config-alloy
在你的项目根目录下创建 .eslintrc.js
,并将以下内容复制到文件中即可:
module.exports = {
extends: [
'alloy',
'alloy/typescript',
],
env: {
// 您的环境变量(包含多个预定义的全局变量)
// Your environments (which contains several predefined global variables)
//
// browser: true,
// node: true,
// mocha: true,
// jest: true,
// jquery: true
},
globals: {
// 您的全局变量(设置为 false 表示它不允许被重新赋值)
// Your global variables (setting to false means it's not allowed to be reassigned)
//
// myGlobal: false
},
rules: {
// 自定义您的规则
// Customize your rules
}
};
更多的使用方法,请参考 AlloyTeam ESLint 规则
如果需要同时支持对 tsx 文件的检查,则需要对以上步骤做一些调整:
安装 eslint-plugin-react
npm install --save-dev eslint-plugin-react
package.json
中的 scripts.eslint
添加 .tsx 后缀
{
"scripts": {
"eslint": "eslint src --ext .ts,.tsx"
}
}
**VSCode 的配置中新增 typescriptreact 检查
{
"files.eol": "\n",
"editor.tabSize": 4,
"editor.formatOnSave": true,
"editor.defaultFormatter": "esbenp.prettier-vscode",
"eslint.autoFixOnSave": true,
"eslint.validate": [
"javascript",
"javascriptreact",
{
"language": "typescript",
"autoFix": true
},
{
"language": "typescriptreact",
"autoFix": true
}
],
"typescript.tsdk": "node_modules/typescript/lib"
}
使用 AlloyTeam ESLint 规则中的 TypeScript React 版本
你运行的是全局的 eslint,需要改为运行 ./node_modules/.bin/eslint
。
.eslintrc.js
有没有配置.eslintignore
中如果以上步骤都不奏效,则可以在「文件 => 首选项 => 设置」中配置"eslint.trace.server": "messages"
,按Ctrl+Shift+U
打开输出面板,然后选择 ESLint 输出,查看具体错误。
因为无法支持这种变量定义的检查。建议在 tsconfig.json
中添加以下配置,使 tsc 编译过程能够检查出定义了未使用的变量:
{
"compilerOptions": {
"noUnusedLocals": true,
"noUnusedParameters": true
}
}
第一个参数以下划线开头即可,参考 https://github.com/Microsoft/TypeScript/issues/9458
【上一章: 代码检查】 【下一章: 感谢】
【返回章节】 【返回目录】
TypeScript 提供了非常多的编译选项,但是官方文档对每一项的解释很抽象,这一章会详细介绍每一个选项的作用,并给出对应的示例。
索引(点击选项跳转到详细介绍):
选项 类型 默认值 描述 allowJs
boolean
false
允许编译js文件 allowSyntheticDefaultImports
boolean
false
允许对不包含默认导出的模块使用默认导入。这个选项不会影响生成的代码,只会影响类型检查。
返回小节
允许编译 js 文件。
设置为 true
时,js 文件会被 tsc 编译,否则不会。一般在项目中 js, ts 混合开发时需要设置。
查看示例
# 设置为 true 时,编译后的文件包含 foo.js
├── lib
│ ├── foo.js
│ └── index.js
├── src
│ ├── foo.js
│ └── index.ts
├── package.json
└── tsconfig.json
# 设置为 false 时,编译后的文件不包含 foo.js
├── lib
│ └── index.js
├── src
│ ├── foo.js
│ └── index.ts
├── package.json
└── tsconfig.json
返回小节
允许对不包含默认导出的模块使用默认导入。这个选项不会影响生成的代码,只会影响类型检查。
export = foo
是 ts 为了兼容 commonjs 创造的语法,它对应于 commonjs 中的 module.exports = foo
。
在 ts 中,如果要引入一个通过 export = foo
导出的模块,标准的语法是 import foo = require('foo')
,或者 import * as foo from 'foo'
。
但由于历史原因,我们已经习惯了使用 import foo from 'foo'
。
这个选项就是为了解决这个问题。当它设置为true
时,允许使用import foo from 'foo'
来导入一个通过export = foo
导出的模块。当它设置为 false 时,则不允许,会报错。
当然,我们一般不会在 ts
文件中使用 export = foo
来导出模块,而是在写(符合 commonjs 规范的)第三方库的声明文件时,才会用到 export = foo
来导出类型。
比如 React 的声明文件中,就是通过 export = React
来导出类型:
export = React;
export as namespace React;
declare namespace React {
// 声明 React 的类型
}
此时若我们通过import React from 'react'
来导入 react 则会报错,查看示例 :
import React from 'react';
// Module '"typescript-tutorial/examples/compiler-options/02-allowSyntheticDefaultImports/false/node_modules/@types/react/index"' can only be default-imported using the 'esModuleInterop' flagts(1259)
解决办法就是将 allowSyntheticDefaultImports
设置为 true
。
【上一章: 编译选项】 【下一章: 参考文献】
【返回目录】
最后,感谢你阅读完本书,希望你会有所收获。
【上一章: 感谢】 【返回目录】
返回目录