The SUM problem can be formulated as follows: given four lists A, B, C, D of integer values, compute how many quadruplet (a, b, c, d ) ∈ A x B x C x D are such that a + b + c + d = 0 . In the following, we assume that all lists have the same size n .
The first line of the input file contains the size of the lists n (this value can be as large as 4000). We then have n lines containing four integer values (with absolute value as large as 228 ) that belong respectively to A, B, C and D .
For each input file, your program has to write the number quadruplets whose sum is zero.
6
-45 22 42 -16
-41 -27 56 30
-36 53 -37 77
-36 30 -75 -46
26 -38 -10 62
-32 -54 -6 45
5
Sample Explanation: Indeed, the sum of the five following quadruplets is zero: (-45, -27, 42, 30), (26, 30, -10, -46), (-32, 22, 56, -46),(-32, 30, -75, 77), (-32, -54, 56, 30).
题目大意:从4个集合中选取四个数,使他们的和为0,问一个有多少种选法。
思路:赤裸裸的二分。先预处理出前两个集合的和sum1,后两个集合的和sum2。对sum1数组排序,对于每一个sum2数组中的值设为 sum2[i] ,在sum1中二分查找 −sum2[i] ,并统计其个数,最后总的个数便是答案。
ps:①函数lower_bound( )在非递减序列[first,last)进行二分查找,返回大于等于val的第一个元素的位置。如果所有元素都小于val,则返回last的位置;②函数upper_bound( )在非递减序列[first,last)进行二分查找,返回大于val的第一个元素的位置。如果所有元素都小于val,则返回last的位置。
#include
#include
using namespace std;
const int maxn=4005;
int a[maxn][4];
int sum1[maxn*maxn],sum2[maxn*maxn];
int p,q;
int main()
{
int n;
while(scanf("%d",&n)!=EOF)
{
for(int i=0;i"%d%d%d%d",&a[i][0],&a[i][1],&a[i][2],&a[i][3]);
p=0,q=0;
for(int i=0;ifor(int j=0;j0]+a[j][1];
sum2[q++]=a[i][2]+a[j][3];
}
sort(sum1,sum1+p);
int ans=0;
for(int i=0;i<q;i++)
ans+=upper_bound(sum1,sum1+p,-sum2[i])-lower_bound(sum1,sum1+p,-sum2[i]);
printf("%d\n",ans);
}
return 0;
}