以下仅为个人评分。官方论文评分请参看:点击打开链接 包括2018年977篇研究论文
英文名:
Certifiable Distributional Robustness with Principled Adversarial Training 9.0
On the Convergence of Adam and Beyond 8.5
Emergence of grid-like representations by training recurrent neural networks to perform spatial localization 8.33333333333
Multi-Scale Dense Networks for Resource Efficient Image Classification 8.33333333333
Boosting Dilated Convolutional Networks with Mixed Tensor Decompositions 8.0
Wasserstein Auto-Encoders 8.0
i-RevNet: Deep Invertible Networks 8.0
Learning to Represent Programs with Graphs 8.0
Continuous Adaptation via Meta-Learning in Nonstationary and Competitive Environments 8.0
Stabilizing Adversarial Nets with Prediction Methods 8.0
A DIRT-T Approach to Unsupervised Domain Adaptation 7.5
Alternating Multi-bit Quantization for Recurrent Neural Networks 7.5
Spherical CNNs | OpenReview 7.5
Deep Mean Field Games for Learning Optimal Behavior Policy of Large Populations 7.5
FusionNet: Fusing via Fully-aware Attention with Application to Machine Comprehension 7.5
Distributed Prioritized Experience Replay 7.33333333333
A PAC-Bayesian Approach to Spectrally-Normalized Margin Bounds for Neural Networks 7.33333333333
Unsupervised Machine Translation Using Monolingual Corpora Only 7.33333333333
CausalGAN: Learning Causal Implicit Generative Models with Adversarial Training 7.33333333333
GENERALIZING ACROSS DOMAINS VIA CROSS-GRADIENT TRAINING 7.33333333333
Neural Speed Reading via Skim-RNN 7.33333333333
Learning Differentially Private Recurrent Language Models 7.33333333333
Synthetic and Natural Noise Both Break Neural Machine Translation 7.33333333333
Learning One-hidden-layer Neural Networks with Landscape Design 7.33333333333
Neural Sketch Learning for Conditional Program Generation 7.33333333333
Modular Continual Learning in a Unified Visual Environment 7.33333333333
AmbientGAN : Generative models from lossy measurements 7.33333333333
Deep Autoencoding Gaussian Mixture Model for Unsupervised Anomaly Detection 7.33333333333
Decision-Based Adversarial Attacks: reliable attacks against Black-Box Machine Learning Models 7.33333333333
Skip Connections Eliminate Singularities 7.33333333333
Eigenoption Discovery through the Deep Successor Representation 7.33333333333
Learning how to explain neural networks: PatternNet and PatternAttribution 7.33333333333
Spectral Normalization for Generative Adversarial Networks 7.33333333333
Mastering the Dungeon: Grounded Language Learning by Mechanical Turker Descent 7.33333333333
PixelNN: Example-based Image Synthesis 7.0
Compressing Word Embeddings via Deep Compositional Code Learning 7.0
Variational Network Quantization 7.0
Learning from Between-class Examples for Deep Sound Recognition 7.0
Deep Learning for Physical Processes: Incorporating Prior Scientific Knowledge 7.0
On the importance of single directions for generalization 7.0
Training RNNs as Fast as CNNs 7.0
Variational image compression with a scale hyperprior 7.0
Deep Learning as a Mixed Convex-Combinatorial Optimization Problem 7.0
Spatially Transformed Adversarial Examples 7.0
Attacking Binarized Neural Networks 7.0
Generative Models of Visually Grounded Imagination 7.0
Variance Reduction for Policy Gradient Methods with Action-Dependent Baselines 7.0
Efficient Sparse-Winograd Convolutional Neural Networks 7.0
Training GANs with Optimism 7.0
Minimal-Entropy Correlation Alignment for Unsupervised Deep Domain Adaptation 7.0
N2N learning: Network to Network Compression via Policy Gradient Reinforcement Learning 7.0
Simulating Action Dynamics with Neural Process Networks 7.0
A Neural Representation of Sketch Drawings 7.0
Certified Defenses against Adversarial Examples 7.0
Lifelong Learning with Dynamically Expandable Networks 7.0
Sobolev GAN | OpenReview 7.0
Backpropagation through the Void: Optimizing control variates for black-box gradient estimation 7.0
Neural Language Modeling by Jointly Learning Syntax and Lexicon 7.0
Learning Latent Permutations with Gumbel-Sinkhorn Networks 7.0
Zero-Shot Visual Imitation 7.0
Intrinsic Motivation and Automatic Curricula via Asymmetric Self-Play 7.0
Regularizing and Optimizing LSTM Language Models 7.0
Active Neural Localization 7.0
Learning to Teach 7.0
SAMPLE-EFFICIENT POLICY OPTIMIZATION WITH STEIN CONTROL VARIATE 7.0
Generalizing Hamiltonian Monte Carlo with Neural Networks 7.0
Analyzing the Role of Temporal Differencing in Deep Reinforcement Learning 7.0
A Scalable Laplace Approximation for Neural Networks 7.0
Hyperparameter optimization: a spectral approach 7.0
A Deep Reinforced Model for Abstractive Summarization 7.0
DCN+: Mixed Objective And Deep Residual Coattention for Question Answering 7.0
Learning Wasserstein Embeddings 7.0
Deep Learning with Logged Bandit Feedback 7.0
GraphVAE: Towards Generation of Small Graphs Using Variational Autoencoders 7.0
Fixing Weight Decay Regularization in Adam 7.0
On the Expressive Power of Overlapping Architectures of Deep Learning 7.0
Understanding Short-Horizon Bias in Stochastic Meta-Optimization 7.0
Relational Neural Expectation Maximization 7.0
Characterizing Adversarial Subspaces Using Local Intrinsic Dimensionality 7.0
When is a Convolutional Filter Easy to Learn? 7.0
Multi-level Residual Networks from Dynamical Systems View 7.0
Neural Map: Structured Memory for Deep Reinforcement Learning 7.0
附中文名:
有理对抗训练证明的分布鲁棒性
论亚当与外在的融合
通过训练递归神经网络来执行空间定位的类网格表示的出现
用于资源有效图像分类的多尺度密集网络
用混合张量分解推广扩张卷积网络
Wasserstein自动编码器
i-RevNet:深度可逆网络
学习用图表来表示程序
在非平稳和竞争的环境中通过元学习的连续适应
用预测方法稳定对抗网络
DIRT-T的无监督域适应方法
递归神经网络的交替多位量化
球形CNN | OpenReview
用于学习大群体最优行为策略的深度均值场博弈
FusionNet:通过注意力的融合和应用到机器理解
分布式优先体验重播
用于神经网络的光谱归一化边界的PAC-贝叶斯方法
无监督机器翻译仅使用单语语料库
因果GAN:学习与敌对训练的因果隐式生成模型
通过交叉渐进式训练将各个区域进行广义化
通过Skim-RNN进行神经速度读取
学习差异性私人循环语言模型
合成与自然噪声破解神经机器翻译
用景观设计学习单隐层神经网络
用于条件程序生成的神经素描学习
统一视觉环境下的模块化持续学习
AmbientGAN:来自有损测量的生成模型
深度自动编码高斯混合模型无监督异常检测
基于决策的敌对攻击:对黑盒机器学习模型的可靠攻击
跳过连接消除奇点
通过深层次的继承表征来发现特征选择
学习如何解释神经网络:模式网络和模式归因
生成对抗网络的谱归一化
掌握地下城:机械Turker下降基础的语言学习
PixelNN:基于实例的图像合成
通过深度合成代码学习压缩Word嵌入
变分网络量化
学习深度声音识别的课堂练习
深入学习物理过程:结合以前的科学知识
关于一般化的单一方向的重要性
培训RNN像CNN一样快
变分图像压缩与规模hyperprior
作为混合凸组合优化问题的深度学习
空间变换敌对的例子
攻击二值化神经网络
视觉地面想象的生成模型
政策梯度方法与行动相关基线的方差减少
高效的稀疏Winograd卷积神经网络
用乐观的方式培训GAN
无监督深度域自适应的最小熵相关校准
N2N学习:通过策略梯度强化学习的网络到网络压缩
用神经网络模拟动作动力学
素描图的神经表示
对抗案例的认证防御
终身学习与动态扩展网络
Sobolev GAN | OpenReview
反向传播通过虚空:优化控制变量的黑盒梯度估计
联合学习句法和词汇的神经语言建模
用Gumbel-Sinkhorn网络学习潜在排列
零射击视觉模仿
内在动机与自动课程的不对称性
规范和优化LSTM语言模型
主动神经定位
学习教学
用STEIN控制变量进行样本有效的政策优化
哈密尔顿型蒙特卡罗神经网络的推广
时间差分在深度强化学习中的作用分析
神经网络的可伸缩拉普拉斯逼近
超参数优化:一种光谱方法
抽象概括的深层次增强模型
DCN +:混合的目标和深刻的解决问题的答案
学习Wasserstein嵌入
深度学习与记录的强盗反馈
GraphVAE:使用变分自动编码器来生成小图
在Adam中确定权重衰减正则化
论深度学习重叠式建筑的表现力
理解随机元优化中的短视场偏差
关系神经期望最大化
利用局部固有维数表征对抗子空间
卷积滤波器什么时候易于学习?
来自动态系统视图的多级剩余网络
神经映射:深度强化学习的结构化记忆