深入理解Java虚拟机(七)字节码执行引擎(栈帧、动态连接、方法调用)

执行引擎是Java虚拟机最核心的组成部分之一。“虚拟机”是一个相对于“物理机”的概念,这两种机器都有代码执行能力,其区别是物理机的执行引擎是直接建立在处理器、硬件、指令集和操作系统层面上的,而虚拟机的执行引擎则是由自己实现的,因此可以自行制定指令集与执行引擎的结构体系,并且能够执行那些不被硬件直接支持的指令集格式。

一、栈帧(Stack Frame)

栈帧(Stack Frame)是虚拟机运行时数据区中的虚拟机栈(Virtual Machine Stack) 的栈元素。栈帧存储了方法的局部变量表、操作数栈、动态连接和方法返回地址等信息。每一个方法从调用开始至执行完成的过程,都对应着一个栈帧在虚拟机栈里面从入栈到出栈的过程。

在编译期,栈帧中需要多大的局部变量表,多深的操作数栈都已经完全确定了,并且写入到方法表的Code属性之中 ,因此一个栈帧需要分配多少内存,不会受到程序运行期变量数据的影响,而仅仅取决于具体的虚拟机实现。

一个线程中的方法调用链可能会很长,很多方法都同时处于执行状态。对于执行引擎来说,在活动线程中,只有位于栈顶的栈帧才是有效的,称为当前栈帧(Current Stack Frame),与这个栈帧相关联的方法称为当前方法(Current Method)。典型的栈帧结构如图:

深入理解Java虚拟机(七)字节码执行引擎(栈帧、动态连接、方法调用)_第1张图片

下面分别对栈帧中每个部分进行说明:

1.1 局部变量表

用于存放方法参数方法内部定义的局部变量。在编译期由Code属性中的max_locals确定局部变量表的大小。 局部变量表的容量以变量槽(Variable Slot)为最小单位。

虚拟机规范中并没有明确指明一个Slot应占用的内存空间大小,只是很有导向性地说到每个Slot都应该能存放一个boolean、byte、char、short、int、float、reference或returnAddress类型的数据,这8种数据类型,都可以使用32位或更小的物理内存来存放,但这种描述与明确指出“每个Slot占用32位长度的内存空间”是有一些差别的,它允许Slot的长度可以随着处理器、操作系统或虚拟机的不同而发生变化。只要保证即使在64位虚拟机中使用了64位的物理内存空间去实现一个Slot,虚拟机仍要使用对齐和补白的手段让Slot在外观上看起来与32位虚拟机中的一致。

注意:

  1. 对于64位的数据类型,虚拟机会以高位对齐的方式为其分配两个连续的Slot空间。
  2. Java语言中明确的(reference类型则可能是32位也可能是64位)64位的数据类型只有long和double两种。
  3. 虚拟机通过索引定位的方式使用局部变量表,索引值的范围是从0开始至局部变量表最大的Slot数量。如果访问的是32位数据类型的变量,索引n就代表了使用第n个Slot,如果是64位数据类型的变量,则说明会同时使用n和n+1两个Slot。
  4. 对于两个相邻的共同存放一个64位数据的两个Slot,不允许采用任何方式单独访问其中的某一个,Java虚拟机规范中明确要求了如果遇到进行这种操作的字节码序列,虚拟机应该在类加载的校验阶段抛出异常。
  5. 局部变量表中第0位索引的Slot默认“this”关键字的引用。
  6. Slot可重用,方法体中定义的变量,其作用域并不一定会覆盖整个方法体,如果当前字节码PC计数器的值已经超出了某个变量的作用域,那这个变量对应的Slot就可以交给其他变量使用。

1.2 Slot重用的副作用

程序一:

public static void main(String[] args){
    byte[]placeholder=new byte[64*1024*1024];
    System.gc();
}

运行结果如下:
在这里插入图片描述

程序二:

public static void main(String[] args){
    {
        byte[] placeholder = new byte[64 * 1024 * 1024];
    }
    System.gc();
}

运行结果如下:
在这里插入图片描述

程序三:

 public static void main(String[] args){
    {
        byte[] placeholder = new byte[64 * 1024 * 1024];
    }
    int i=0;
    System.gc();
}

运行结果如下:
在这里插入图片描述

1.3 操作栈

同局部变量表一样,操作数栈的最大深度也在编译的时候写入到Code属性的
max_stacks数据项中。操作数栈的每一个元素可以是任意的Java数据类型,包括long和double。32位数据类型所占的栈容量为1,64位数据类型所占的栈容量为2。

当一个方法刚刚开始执行的时候,这个方法的操作数栈是空的,在方法的执行过程中,会有各种字节码指令往操作数栈中写入和提取内容,也就是出栈/入栈操作。例如,在做算术运算的时候是通过操作数栈来进行的,又或者在调用其他方法的时候是通过操作数栈来进行参数传递的。

举个例子,整数加法的字节码指令iadd在运行的时候操作数栈中最接近栈顶的两个元素已经存入了两个int型的数值,当执行这个指令时,会将这两个int值出栈并相加,然后将相加的结果入栈。

在概念模型中,两个栈帧作为虚拟机栈的元素,是完全相互独立的。但在大多虚拟机的实现里都会做一些优化处理,令两个栈帧出现一部分重叠。让下面栈帧的部分操作数栈与上面栈帧的部分局部变量表重叠在一起,这样在进行方法调用时就可以共用一部分数据,无须进行额外的参数复制传递,重叠的过程如图8-2所示。

深入理解Java虚拟机(七)字节码执行引擎(栈帧、动态连接、方法调用)_第2张图片

1.4 动态连接

每个栈帧都包含一个指向运行时常量池中该栈帧所属方法的引用,持有这个引用是为了支持方法调用过程中的动态连接(Dynamic Linking)。在后面的方法调用中会详细介绍。

1.5 方法返回地址

当一个方法开始执行后,只有两种方式可以退出,一种是遇到方法返回的字节码指令;一种是遇见异常,并且这个异常没有在方法体内得到处理。

无论采用何种退出方式,在方法退出之后,都需要返回到方法被调用的位置,程序才能继续执行,方法返回时可能需要在栈帧中保存一些信息,用来帮助恢复它的上层方法的执行状态。一般来说,方法正常退出时,调用者的PC计数器的值可以作为返回地址,栈帧中很可能会保存这个计数器值。而方法异常退出时,返回地址是要通过异常处理器表来确定的,栈帧中一般不会保存这部分信息。

方法退出的过程实际上就等同于把当前栈帧出栈,因此退出时可能执行的操作有:恢复上层方法的局部变量表和操作数栈,把返回值(如果有的话)压入调用者栈帧的操作数栈中,调整PC计数器的值以指向方法调用指令后面的一条指令等。

二、方法调用

方法调用并不等同于方法执行,方法调用阶段唯一的任务就是确定被调用方法的版本(即调用哪一个方法),暂时还不涉及方法内部的具体运行过程。

Class文件的编译过程中不包含传统编译中的连接步骤,一切方法调用在Class文件里面存储的都只是符号引用,而不是方法在实际运行时内存布局中的入口地址(相当于之前说的直接引用)。

这个特性给Java带来了更强大的动态扩展能力,但也使得Java方法调用过程变得相对复杂起来,需要在类加载期间,甚至到运行期间才能确定目标方法的直接引用。

所有方法调用中的目标方法在Class文件里面都是一个常量池中的符号引用,在类加载的解析阶段,会将其中的一部分符号引用转化为直接引用,这种解析能成立的前提是:方法在程序真正运行之前就有一个可确定的调用版本,并且这个方法的调用版本在运行期是不可改变的。换句话说,调用目标在程序代码写好、编译器进行编译时就必须确定下来。这类方法的调用称为解析(Resolution)。

在Java语言中符合“编译期可知,运行期不可变”这个要求的方法,主要包括静态方法和私有方法两大类,前者与类型直接关联,后者在外部不可被访问,这两种方法各自的特点决定了它们都不可能通过继承或别的方式重写其他版本,因此它们都适合在类加载阶段进行解析。

与之相对应的是,在Java虚拟机里面提供了5条方法调用字节码指令,分别如下:

  • invokestatic:调用静态方法。
  • invokespecial:调用实例构造器方法、私有方法和父类方法。
  • invokevirtual:调用所有的虚方法。还有final修饰的方法。
  • invokeinterface:调用接口方法,会在运行时再确定一个实现此接口的对象。
  • invokedynamic:先在运行时动态解析出调用点限定符所引用的方法,然后再执行该方法,在此之前的4条调用指令,分派逻辑是固化在Java虚拟机内部的,而- - invokedynamic指令的分派逻辑是由用户所设定的引导方法决定的。

只要能被invokestatic和invokespecial指令调用的方法,都可以在解析阶段中确定唯一的调用版本,符合这个条件的有静态方法、私有方法、实例构造器、父类方法4类。

静态方法解析演示:

StaticResolution.java文件如下:

public class StaticResolution{
	public static void sayHello(){
		System.out.println("hello world");
	}
	public static void main(String[]args){
		StaticResolution.sayHello();
	}
}

执行javap -verbose StaticResolution如下,可以看到main方法中使用的是invokestatic静态方法调用指令。
深入理解Java虚拟机(七)字节码执行引擎(栈帧、动态连接、方法调用)_第3张图片

三、方法分派

因为Java具备面向对象的3个基本特征:继承、封装和多态。下面介绍一下“重载”和“重写。方法分派分为静态单分派、静态多分派、动态单分派、动态多分派4种。

1. 静态分派

public class StaticDispatch {

        static abstract class Human{
        }
        static class Man extends Human{
        }
        static class Woman extends Human{
        }
        public void sayHello(Human guy){
            System.out.println("hello,guy!");
        }
        public void sayHello(Man guy){
            System.out.println("hello,gentleman!");
        }
        public void sayHello(Woman guy){
            System.out.println("hello,lady!");
        }
        public static void main(String[]args){
            Human man=new Man();
            Human woman=new Woman();
            StaticDispatch sr=new StaticDispatch();
            sr.sayHello(man);
            sr.sayHello(woman);
        }

}

运行结果如下:
在这里插入图片描述
将上面代码中稍作改动:

sr.sayHello((Man)man);
sr.sayHello((Woman)woman);

运行结果如下:
在这里插入图片描述

编译器在重载时是通过参数的静态类型(Human)而不是实际类型(Man或Woman)作为判定依据的。并且静态类型是编译期可知的,因此,在编译阶段,Javac编译器会根据参数的静态类型决定使用哪个重载版本,所以选择了sayHello(Human)作为调用目标,并把这个方法的符号引用写到main()方法里的两条invokevirtual指令的参数中。

注意:静态分派发生在编译阶段,因此确定静态分派的动作实际上不是由虚拟机来执行的。另外,编译器虽然能确定出方法的重载版本,但在很多情况下这个重载版本并不是“唯一的”,往往只能确定一个“更加合适的”版本。例如下面的这个例子:

重载方法匹配优先级:


public class Overload {

    public static void sayHello(Object arg){
        System.out.println("hello Object");
    }
    public static void sayHello(int arg){
        System.out.println("hello int");
    }
    public static void sayHello(long arg){
        System.out.println("hello long");
    }
    public static void sayHello(Character arg){
        System.out.println("hello Character");
    }
    public static void sayHello(char arg){
        System.out.println("hello char");
    }
    public static void sayHello(char...arg){
        System.out.println("hello char......");
    }
    public static void sayHello(Serializable arg){
        System.out.println("hello Serializable");
    }
    public static void main(String[]args){
        sayHello('a');
    }
}

上面代码的匹配顺序是按照char->int->long->float->double->Character->Serializable的顺序转型进行匹配。如果注释掉参数为char类型的方法,就会去匹配参数为int的类型,因为’a’还可以代表97,如果继续注释到剩下Character类型的方法,就会发生一次自动装箱,如果连Character类型的方法都不存在了,就只能去匹配Serializable类型了,因为Serializable是Character实现的一个接口。可见变长参数的重载优先级是最低的,这时候字符’a’被当做了一个数组元素。

2. 动态分派

动态分派主要用来实现java多态的一个另一个特性:重写(Override)

public class DynamicDispatch {

    static abstract class Human{
        protected abstract void sayHello();
    }
    static class Man extends Human{
        @Override
        protected void sayHello(){
            System.out.println("man say hello");
        }
    }
    static class Woman extends Human{
        @Override
        protected void sayHello(){
            System.out.println("woman say hello");
        }
    }
    public static void main(String[]args){
        Human man=new Man();
        Human woman=new Woman();
        man.sayHello();
        woman.sayHello();
        man=new Woman();
        man.sayHello();
    }
}

运行结果如下:
在这里插入图片描述

invokevirtual指令的运行时解析过程大致分为以下几个步骤:

  • 1)找到操作数栈顶的第一个元素所指向的对象的实际类型,记作C。
  • 2)如果在类型C中找到与常量中的描述符和简单名称都相符的方法,则进行访问权限校
    验,如果通过则返回这个方法的直接引用,查找过程结束;如果不通过,则返回
    java.lang.IllegalAccessError异常。
  • 3)否则,按照继承关系从下往上依次对C的各个父类进行第2步的搜索和验证过程。
  • 4)如果始终没有找到合适的方法,则抛出java.lang.AbstractMethodError异常。

由于invokevirtual指令执行的第一步就是在运行期确定接收者的实际类型,所以两次调用中的invokevirtual指令把常量池中的类方法符号引用解析到了不同的直接引用上,这个过程就是Java语言中方法重写的本质。我们把这种在运行期根据实际类型确定方法执行版本的分派过程称为动态分派。

3. 单分派与多分派


public class Dispatch {

    static class QQ{}
    static class _360 {}
    public static class Father{
        public void hardChoice(QQ arg){
            System.out.println("father choose qq");
        }
        public void hardChoice(_360 arg){
            System.out.println("father choose 360");
        }
    }
    public static class Son extends Father{
        public void hardChoice(QQ arg){
            System.out.println("son choose qq");
        }
        public void hardChoice(_360 arg){
            System.out.println("son choose 360");
        }
    }
    public static void main(String[]args){
        Father father=new Father();
        Father son=new Son();
        father.hardChoice(new _360());
        son.hardChoice(new QQ());
    }

}

运行结果如下:
在这里插入图片描述

编译阶段编译器的选择过程,也就是静态分派的过程。这时选择目标方法的依据有两点:一是静态类型是Father还是Son,二是方法参数是QQ还是360。这次选择结果的最终产物是产生了两条invokevirtual指令,两条指令的参数分别为常量池中指向Father.hardChoice(360)及Father.hardChoice(QQ)方法的符号引用。因为是根据两个宗量进行选择,所以Java语言的静态分派属于多分派类型。

运行阶段虚拟机的选择,也就是动态分派的过程。在执行“son.hardChoice(new QQ())”这句代码时,更准确地说,是在执行这句代码所对应的invokevirtual指令时,由于编译期已经决定目标方法的签名必须为hardChoice(QQ),虚拟机此时不会关心传递过来的参数“QQ”到底是“腾讯QQ”还是“奇瑞QQ”,因为这时参数的静态类型、实际类型都对方法的选择不会构成任何影响,唯一可以影响虚拟机选择的因素只有此方法的接受者的实际类型是Father还是Son。因为只有一个宗量作为选择依据,所以Java语言的动态分派属于单分派类型。

四、虚拟机的行为

由于动态分派是非常频繁的动作,而且动态分派的方法版本选择过程需要运行时在类的方法元数据中搜索合适的目标方法,因此在虚拟机的实际实现中基于性能的考虑,大部分实现都不会真正地进行如此频繁的搜索。面对这种情况,最常用的“稳定优化”手段就是为类在方法区中建立一个虚方法表(Vritual Method Table,也称为vtable,与此对应的,在invokeinterface执行时也会用到接口方法表——Inteface Method Table,简称itable),使用虚方法表索引来代替元数据查找以提高性能。我们先看看代码清单8-10所对应的虚方法表结构示例,如图8-3所示。
深入理解Java虚拟机(七)字节码执行引擎(栈帧、动态连接、方法调用)_第4张图片

虚方法表中存放着各个方法的实际入口地址。如果某个方法在子类中没有被重写,那子类的虚方法表里面的地址入口和父类相同方法的地址入口是一致的,都指向父类的实现入口。如果子类中重写了这个方法,子类方法表中的地址将会替换为指向子类实现版本的入口地址。图8-3中,Son重写了来自Father的全部方法,因此Son的方法表没有指向Father类型数据的箭头。但是Son和Father都没有重写来自Object的方法,所以它们的方法表中所有从Object继承来的方法都指向了Object的数据类型。

为了程序实现上的方便,具有相同签名的方法,在父类、子类的虚方法表中都应当具有一样的索引序号,这样当类型变换时,仅需要变更查找的方法表,就可以从不同的虚方法表中按索引转换出所需的入口地址。

方法表一般在类加载的连接阶段进行初始化,准备了类的变量初始值后,虚拟机会把该类的方法表也初始化完毕。

你可能感兴趣的:(Java虚拟机)