作业图(JobGraph)是Flink的运行时所能理解的作业表示,无论程序通过是DataStream还是DataSet API编写的,它们的JobGraph提交给JobManager以及之后的处理都将得到统一。本篇我们将分析客户端如何提交JobGraph给JobManager。
在前面讲解Flink的核心概念的时候我们谈到了Flink利用了“惰性求值”的概念,只有当最终调用execute方法时,才会真正开始执行。因此,execute方法是我们的切入点。
DataStream API所编写的程序生成作业图之后,在提交时产生的方法调用时序图示意如下:
上图中的多个run方法是同名的方法重载。
从时序图中可以看到,ClusterClient对其自身抽象方法submitJob的调用是触发作业图提交的方法。随后真正的提交逻辑由JobClient实现。
ClusterClient封装了提交一个程序到远程集群的必要的功能,而StandaloneClusterClient则扩展了ClusterClient的功能,它专门针对独立的集群提供服务,这两个类都位于flink-clients模块中。JobClient则负责将用户的Job提交给JobManager,它充当了提交代理的角色,并返回表示作业执行结果的JobExecutionResult对象。
JobClient是提交所有类型的Job的统一入口,具体的提交细节我们将会在“公共的提交流程”中详细分析。
利用DataSet API所编写的程序生成作业图之后,在提交时产生的方法调用的时序图如下:
上图中出现多个重名的run方法为同名方法重载。
从上图中可以看到,批处理程序的JobGraph跟流处理程序的JobGraph在提交之前有非常明显的不同。它引入了PlanExecutor作为Flink程序的计划执行器。而RemoteExecutor是PlanExecutor的实现,用于将程序提交给远程的Flink集群。具体的提交动作被进一步委托给ClusterClient及其实现(StandaloneClusterClient)最终同样被JobClient代理提交给JobManager。
从前面的时序图可见Flink对于不同类型的程序的提交流程最终是殊途同归的。因此,接下来我们将对公共的提交流程进行分析。一个程序的JobGraph真正被提交始于对JobClient的submitJobAndWait方法的调用。
submitJobAndWait方法用于将一个JobGraph发送到指定的JobClient actor,随后它会将该JobGraph转发给JobManager。该方法会一直阻塞,直到该作业执行完成或者感知不到JobManager的存活。如果作业被顺利执行完成则返回JobExecutionResult对象而如果JobManager产生故障,则抛出抛出JobExecutionException异常。
一个JobGraph从提交开始会经过多个对象层层递交,各个对象之间的交互关系如下图所示:
JobClient在其中起到了“桥接”作用,它桥接了同步的方法调用和异步的消息通信。更具体得说,JobClient可以看做是一个“静态类”提供了一些静态方法,这里我们主要关注上面的submitJobAndWait方法,该方法内部封装了Actor之间的异步通信(具体的通信对象是JobClientActor,它负责跟JobManager的ActorSystem的Actor对象进行通信),并以阻塞的形式返回结果。而ClusterClient只需调用JobClient的submitJobAndWait方法,而无需关注其内部是如何实现的。
通过调用JobClient的submitJobAndWait静态方法,会触发基于Akka的Actor之间的消息通信来完成后续的提交JobGraph的动作。这之间的交互示意图如下:
这里总共有两个ActorSystem,一个归属于JobClient,另一个归属于JobManager。在submitJobAndWait方法中,其首先会创建一个JobClientActor的ActorRef:
ActorRef jobClientActor = actorSystem.actorOf(jobClientActorProps);
然后向其发起一个SubmitJobAndWait消息,该消息将JobGraph的实例提交给JobClientActor。发起模式是ask,它表示需要一个应答消息。
Akka的消息通信模型有两种:
- Fire and forget:消息的生产者不期望从消息的消费者那里得到应答。这种消息会以异步的形式发送,发送方法在发送完成之后立即返回。Akka的actor使用tell方法发送这种消息。
- Send and receive:消息的生产者期待并将等待从消费者那里得到应答。这种消息也会以异步的形式发送,发送完成后会返回一个Future对象,该对象表示一个潜在的应答。Akka的actor使用ask方法发送这种消息,并通过Future来获取响应。
JobClient向JobClientActor发送消息的代码段如下:
Future
该SubmitJobAndWait消息被JobClientActor接收后,最终通过调用tryToSubmitJob方法触发真正的提交动作。在tryToSubmitJob方法中,一个JobGraph的提交将会分为两步:
随后,JobManager Actor会接收到来自JobClientActor的SubmitJob消息,进而触发submitJob方法,该方法的执行主体已经是JobManager了。submitJob包含的逻辑较为复杂,且任何一个检测或者子调用所产生的异常都可能会导致提交失败。我们列举一下该方法完成的主要任务:
如果提交流程顺利,用户程序包以及描述Job的JobGraph将会被JobManager接收,随后JobManager会对Job进行调度、部署并执行。JobClient会阻塞等待提交结果返回。在得到返回结果之后,先进行解析判断它是否是Job被成功执行后返回的结果:
if (answer instanceof JobManagerMessages.JobResultSuccess) {
SerializedJobExecutionResult result = ((JobManagerMessages.JobResultSuccess) answer).result();
if (result != null) {
try {
return result.toJobExecutionResult(classLoader);
} catch (Throwable t) {
throw new JobExecutionException(jobGraph.getJobID(),
"Job was successfully executed but JobExecutionResult could not be deserialized.");
}
} else {
throw new JobExecutionException(jobGraph.getJobID(),
"Job was successfully executed but result contained a null JobExecutionResult.");
}
}
还是失败后返回的结果:
if (answer instanceof JobManagerMessages.JobResultFailure) {
LOG.info("Job execution failed");
SerializedThrowable serThrowable = ((JobManagerMessages.JobResultFailure) answer).cause();
if (serThrowable != null) {
Throwable cause = serThrowable.deserializeError(classLoader);
if (cause instanceof JobExecutionException) {
throw (JobExecutionException) cause;
} else {
throw new JobExecutionException(jobGraph.getJobID(), "Job execution failed", cause);
}
} else {
throw new JobExecutionException(jobGraph.getJobID(),
"Job execution failed with null as failure cause.");
}
} else {
throw new JobExecutionException(jobGraph.getJobID(),
"Unknown answer from JobManager after submitting the job: " + answer);
}
以上就是批处理作业和流处理作业共同的提交流程,这中间涉及了JobManager接收到用户提交后一系列处理,这部分的处理细节我们随后进行分析。
微信扫码关注公众号:Apache_Flink
QQ扫码关注QQ群:Apache Flink学习交流群(123414680)