yolov3批量测试代码,网上有很多版本,官网版本的完全按照教程没有问题,这里提供AlexeyAB/darknet版的图片批量测试代码。原文网址 https://github.com/AlexeyAB/darknet
假设训练按照原版处理完成:
1.请更新最新的代码;
2.请在/root/darknet/src路径下找到detector.c文件,并打开,或请在根目录下直接执行:
#vim darknet/src/detector.c
3.定位到 void test_detector(char *datacfg ...)这一行,将这个函数模块用以下代码完全替代:
注意3个地方:(1)请在根路径下新建一个测试文档,本文新建了test.txt文件,里面是你需要测试图片的路径与文件名,建议直接复制在训练之前生成的那个train.txt文件;
(2)请在根目录下新建文件夹,用来存放测试图片的结果,本文在根目录下新建文件夹,命名为result_img。读者可自己定义。
(3)请在以下代码 sprintf(b, "result_img/%d", i); 处修改成对应自己的文件夹路径。
void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh,
float hier_thresh, int dont_show, int ext_output, int save_labels, char *outfile, int letter_box)
{
list *options = read_data_cfg(datacfg);
char *name_list = option_find_str(options, "names", "data/names.list");
int names_size = 0;
char **names = get_labels_custom(name_list, &names_size); //get_labels(name_list);
image **alphabet = load_alphabet();
network net = parse_network_cfg_custom(cfgfile, 1, 1); // set batch=1
if (weightfile) {
load_weights(&net, weightfile);
}
fuse_conv_batchnorm(net);
calculate_binary_weights(net);
if (net.layers[net.n - 1].classes != names_size) {
printf(" Error: in the file %s number of names %d that isn't equal to classes=%d in the file %s \n",
name_list, names_size, net.layers[net.n - 1].classes, cfgfile);
if (net.layers[net.n - 1].classes > names_size) getchar();
}
srand(2222222);
double time;
char buff[256];
char *input = buff;
char *json_buf = NULL;
int json_image_id = 0;
FILE* json_file = NULL;
if (outfile) {
json_file = fopen(outfile, "wb");
char *tmp = "[\n";
fwrite(tmp, sizeof(char), strlen(tmp), json_file);
}
int j,i;
float nms = .45; // 0.4F
if (filename) {
strncpy(input, filename, 256);
list *plist = get_paths(input);
char **paths = (char **)list_to_array(plist);
printf("Start Testing!\n");
int m = plist->size;
for(i=0;i thresh && dets[i].prob[j] > prob) {
prob = dets[i].prob[j];
class_id = j;
}
}
if (class_id >= 0) {
sprintf(buff, "%d %2.4f %2.4f %2.4f %2.4f\n", class_id, dets[i].bbox.x, dets[i].bbox.y, dets[i].bbox.w, dets[i].bbox.h);
fwrite(buff, sizeof(char), strlen(buff), fw);
}
}
fclose(fw);
}
free_detections(dets, nboxes);
free_image(im);
free_image(sized);
}
}
printf("All Done!\n");
pause();
exit(0);
free_ptrs(names, net.layers[net.n - 1].classes);
free_list_contents_kvp(options);
free_list(options);
const int nsize = 8;
for (j = 0; j < nsize; ++j) {
for (i = 32; i < 127; ++i) {
free_image(alphabet[j][i]);
}
free(alphabet[j]);
}
free(alphabet);
free_network(net);
printf("All Done!\n");
pause();
}
4.保存好后请重新编译,执行
#make clean
#make
5.执行以下指令,在result_img文件夹中便可看到结果:
# ./darknet detector test cfg/voc.data cfg/yolov3-voc.cfg backup/yolov3-voc_final.weights test.txt
6.结果如下: