很简单
1、这句话很重要哦,运行全局变量脚本,否则运行demo会报错哦!
source /opt/intel/openvino/bin/setupvars.sh -pyver 3.5
在编译和运行OpenVINO™应用程序之前,必须更新多个环境变量。运行以下脚本以临时设置环境变量:
source/opt/intel/openvino/bin/setupvars.sh
可选:关闭shell时将删除OpenVINO环境变量。作为选项,您可以永久设置环境变量,如下所示:
vi home/ .bashrc
source/opt/intel/openvino/bin/setupvars.sh
设置环境变量。继续下一部分以配置模型优化程序。
2、运行编译完的C++ demo,参数一定要带全哦
C++ demo所在路径/home/root1/inference_engine_samples_build/intel64/Release
cd /home/root1/inference_engine_samples_build/intel64/Release
测试用的视频及图片所在路径/opt/intel/openvino/deployment_tools/demo
cd /opt/intel/openvino/deployment_tools/demo
模型所在路径 /home/root1/openvino_models/
cd /home/root1/openvino_models/
人员属性https://docs.openvinotoolkit.org/latest/_inference_engine_samples_crossroad_camera_demo_README.html
./crossroad_camera_demo -d CPU -i /opt/intel/openvino/deployment_tools/demo/out14.avi -m /home/root1/openvino_models/ir/FP32/Security/object_detection/crossroad/0078/dldt/person-vehicle-bike-detection-crossroad-0078.xml -m_pa /home/root1/openvino_models/ir/FP32/Security/object_attributes/pedestrian/person-attributes-recognition-crossroad-0230/dldt/person-attributes-recognition-crossroad-0230.xml -m_reid /home/root1/openvino_models/ir/FP32/Retail/object_reidentification/pedestrian/rmnet_based/0079/dldt/person-reidentification-retail-0079.xml
车辆识别https://docs.openvinotoolkit.org/latest/_inference_engine_samples_security_barrier_camera_demo_README.html
./security_barrier_camera_demo
-d CPU -d_va CPU -d_lpr CPU
-i /opt/intel/openvino/deployment_tools/demo/3.jpg
-m /home/root1/openvino_models/ir/FP32/Security/object_detection/barrier/0106/dldt/vehicle-license-plate-detection-barrier-0106.xml
-m_va /home/root1/openvino_models/ir/FP32/Security/object_attributes/vehicle/resnet10_update_1/dldt/vehicle-attributes-recognition-barrier-0039.xml
-m_lpr /home/root1/openvino_models/ir/FP32/Security/optical_character_recognition/license_plate/dldt/license-plate-recognition-barrier-0001.xml
人体姿态:
./multi-channel-human-pose-estimation-demo -d CPU -i /opt/intel/openvino/deployment_tools/demo/out.avi -m /home/root1/openvino_models/Transportation/human_pose_estimation/mobilenet-v1/dldt/human-pose-estimation-0001.xml
年龄和性别检测:
./interactive_face_detection_demo -i /opt/intel/openvino/deployment_tools/demo/1.mp4 -m /home/root1/openvino_models/Retail/object_detection/face/sqnet1.0modif-ssd/0004/dldt/face-detection-retail-0004.xml -m_ag /home/root1/openvino_models/Retail/object_attributes/age_gender/dldt/age-gender-recognition-retail-0013.xml
目标识别https://docs.openvinotoolkit.org/latest/_inference_engine_samples_object_detection_sample_ssd_README.html
只支持图片,两个模型,输出图片结果到demo目录下,目前不知道0013和0002区别在哪?0002使用111.png图片不识别人
./object_detection_sample_ssd -i /opt/intel/openvino/deployment_tools/demo/111.png -m /home/root1/openvino_models/Retail/object_detection/pedestrian/rmnet_ssd/0013/dldt/person-detection-retail-0013.xml -d CPU
./object_detection_sample_ssd -i /opt/intel/openvino/deployment_tools/demo/1.png -m /home/root1/openvino_models/Retail/object_detection/pedestrian/hypernet-rfcn/0026/dldt/person-detection-retail-0002.xml -d CPU
3、运行python demo
python demo所在路径/opt/intel/openvino/inference_engine/samples/python_samples/
cd /opt/intel/openvino/inference_engine/samples/python_samples/
图像分类
https://docs.openvinotoolkit.org/latest/_inference_engine_ie_bridges_python_sample_classification_sample_README.html
python3 classification_sample.py -i
python3 classification_sample.py -i
购物者凝视监视器 https://github.com/intel-iot-devkit/shopper-gaze-monitor-python
cd /opt/intel/openvino/inference_engine/samples/python_samples/shopper-gaze-monitor-python-master
python3 main.py -m /opt/intel/openvino/deployment_tools/tools/model_downloader/Transportation/object_detection/face/pruned_mobilenet_reduced_ssd_shared_weights/dldt/face-detection-adas-0001.xml -pm /opt/intel/openvino/deployment_tools/tools/model_downloader/Transportation/object_attributes/headpose/vanilla_cnn/dldt/head-pose-estimation-adas-0001.xml -l /opt/intel/openvino/inference_engine/lib/intel64/libcpu_extension_sse4.so -d CPU -i resources/face-demographics-walking-and-pause.mp4