在leetcode中遇到这样一道题:
200.岛屿数量
给定一个由 ‘1’(陆地)和 ‘0’(水)组成的的二维网格,计算岛屿的数量。一个岛被水包围,并且它是通过水平方向或垂直方向上相邻的陆地连接而成的。你可以假设网格的四个边均被水包围。
示例 1:
输入:
11110
11010
11000
00000
输出: 1
示例 2:
输入:
11000
11000
00100
00011
输出: 3
这样的题,首先想到的就是使用深搜或者宽搜进行查找。
使用深搜宽搜,是这样写代码的:这里类似于泛洪,向四周扩散,已经收到包的弃包。
public void dfs(char[][] grid,int i,int j){
if(i<grid.length&&j<grid[0].length&&i>-1&&j>-1){
if(grid[i][j]=='1'){
grid[i][j]='0';
dfs(grid,i+1,j);
dfs(grid,i,j+1);
dfs(grid,i-1,j);
dfs(grid,i,j-1);
}else return;
}else return;
}
然后再使用两层嵌套循环复杂度O(M·N),遍历二维数组每一个点是否已经被访问过。
在查看题解的时候,发现了更好的解法,并不是说复杂度减少了,而是说提供了新的思路。
为了解释并查集的原理,我将举一个更有爱的例子。
话说江湖上散落着各式各样的大侠,有上千个之多。他们没有什么正当职业,整天背着剑在外面走来走去,碰到和自己不是一路人的,就免不了要打一架。但大侠们有一个优点就是讲义气,绝对不打自己的朋友。而且他们信奉“朋友的朋友就是我的朋友”,只要是能通过朋友关系串联起来的,不管拐了多少个弯,都认为是自己人。这样一来,江湖上就形成了一个一个的群落,通过两两之间的朋友关系串联起来。而不在同一个群落的人,无论如何都无法通过朋友关系连起来,于是就可以放心往死了打。但是两个原本互不相识的人,如何判断是否属于一个朋友圈呢?
我们可以在每个朋友圈内推举出一个比较有名望的人,作为该圈子的代表人物,这样,每个圈子就可以这样命名“齐达内朋友之队”“罗纳尔多朋友之队”……两人只要互相对一下自己的队长是不是同一个人,就可以确定敌友关系了。
但是还有问题啊,大侠们只知道自己直接的朋友是谁,很多人压根就不认识队长,要判断自己的队长是谁,只能漫无目的的通过朋友的朋友关系问下去:“你是不是队长?你是不是队长?”这样一来,队长面子上挂不住了,而且效率太低,还有可能陷入无限循环中。于是队长下令,重新组队。队内所有人实行分等级制度,形成树状结构,我队长就是根节点,下面分别是二级队员、三级队员。每个人只要记住自己的上级是谁就行了。遇到判断敌友的时候,只要一层层向上问,直到最高层,就可以在短时间内确定队长是谁了。
由于我们关心的只是两个人之间是否连通,至于他们是如何连通的,以及每个圈子内部的结构是怎样的,甚至队长是谁,并不重要。所以我们可以放任队长随意重新组队,只要不搞错敌友关系就好了。于是,门派产生了。
通过上面的文字信息描述,我们可以知道:
- 并查集算法描述的是树,准确的说是森林。并查集将图的连通问题转换为树的根节点是否相同的问题。
- 任意两个节点是否连通,只需要通过while循环找到根节点,并判断根节点是否相同即可。
通过上面的文字信息描述,我们还需要确认:
- 并查集树的构建方式和数据结构。
- 如何确认父节点,如何确认第一个根节点。
我相信,解决了上面两个问题,并查集算法就呼之欲出了。
下面我们来看并查集的实现。
int pre[1000];
这个数组,记录了每个大侠的上级是谁。
大侠们从1或者0开始编号(依据题意而定),pre[15]=3就表示15号大侠的上级是3号大侠。如果一个人的上级就是他自己,那说明他就是掌门人了,查找到此为止。也有孤家寡人自成一派的,比如欧阳锋,那么他的上级就是他自己。每个人都只认自己的上级。比如胡青牛同学只知道自己的上级是杨左使。张无忌是谁?不认识!要想知道自己的掌门是谁,只能一级级查上去。 find()
这个函数就是找掌门用的,意义再清楚不过了。
int find(int x) //查找我(x)的掌门
{
int r=x; //委托 r 去找掌门
while (pre[r]!=r){ //如果r的上级不是r自己(也就是说找到的大侠他不是掌门 = =)
r=pre[r]; // r 就接着找他的上级,直到找到掌门为止。
}
return r ; //掌门驾到~~~
}
再来看看join()
函数,就是在两个点之间连一条线,这样一来,原先它们所在的两个板块的所有点就都可以互通了。
虚竹小和尚与周芷若是我非常喜欢的两个人物,他们的终极boss分别是玄慈方丈和灭绝师太,那明显就是两个阵营了。我不希望他们互相打架,就对他俩说:“你们两位拉拉勾,做好朋友吧。”他们看在我的面子上,同意了。这一同意可非同小可,整个少林和峨眉派的人就不能打架了。这么重大的变化,可如何实现呀,要改动多少地方?其实非常简单,我对玄慈方丈说:“大师,麻烦你把你的上级改为灭绝师太吧。这样一来,两派原先的所有人员的终极boss都是师太,那还打个球啊!反正我们关心的只是连通性,门派内部的结构不要紧的(也就是将两棵树合并成为一棵树,谁做根节点无所谓)。
void join(int x,int y) //我想让虚竹和周芷若做朋友
{
int fx=find(x),fy=find(y); //虚竹的老大是玄慈,芷若MM的老大是灭绝
if(fx!=fy) //玄慈和灭绝显然不是同一个人
pre[fx ]=fy; //方丈只好委委屈屈地当了师太的手下啦
}
再来看看路径压缩算法。建立门派的过程是用join函数两个人两个人地连接起来的,谁当谁的手下完全随机。最后的树状结构会变成什么样,完全无法预计,一字长蛇阵也有可能。这样查找的效率就会比较低下。最理想的情况就是所有人的直接上级都是掌门,一共就两级结构,只要找一次就找到掌门了。哪怕不能完全做到,也最好尽量接近。这样就产生了路径压缩算法。
设想这样一个场景:两个互不相识的大侠碰面了,想知道能不能揍。 于是赶紧打电话问自己的上级:“你是不是掌门?” 上级说:“我不是呀,我的上级是谁谁谁,你问问他看看。” 一路问下去,原来两人的最终boss都是东厂曹公公。 “哎呀呀,原来是记己人,西礼西礼,在下三营六组白面葫芦娃!” “幸会幸会,在下九营十八组仙子狗尾巴花!” 两人高高兴兴地手拉手喝酒去了。 “等等等等,两位同学请留步,还有事情没完成呢!”我叫住他俩。 “哦,对了,还要做路径压缩。”两人醒悟。 白面葫芦娃打电话给他的上级六组长:“组长啊,我查过了,其习偶们的掌门是曹公公。不如偶们一起及接拜在曹公公手下吧,省得级别太低,以后查找掌门麻环。” “唔,有道理。” 白面葫芦娃接着打电话给刚才拜访过的三营长……仙子狗尾巴花也做了同样的事情。 这样,查询中所有涉及到的人物都聚集在曹公公的直接领导下。每次查询都做了优化处理,所以整个门派树的层数都会维持在比较低的水平上。
在查询算法的基础上,作出如下的改动:(查询到根节点后,自底向上依次将各个子节点的父节点改为根节点)。
int find(int x) //查找根节点
{
int r=x;
while ( pre[r] != r ) //返回根节点 r
r=pre[r];
int i=x , j ;
while( i != r ) //路径压缩
{
j = pre[ i ]; // 在改变上级之前用临时变量 j 记录下他的值
pre[ i ]= r ; //把上级改为根节点
i=j;
}
return r ;
并查集的步骤是这样的:
根据并查集,我们可以这样做:
find()
函数:(这里暂时没做压缩路径处理)
public int find(int i) { // path compression
if (parent[i] != i) parent[i] = find(parent[i]);
return parent[i];
}
join()
函数:
public void union(int x, int y) {
int rootx = find(x);
int rooty = find(y);
if (rootx != rooty) {
parent[rooty] = rootx;
--count;
}
}
初始化init
操作:
//UnionFind构造类
public UnionFind(char[][] grid) { // for problem 200
count = 0;
int m = grid.length;
int n = grid[0].length;
parent = new int[m * n];
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (grid[i][j] == '1') {
parent[i * n + j] = i * n + j;
++count;
}
}
}
}
当然,这道题,仅仅有这三个函数组成的类UnionFind还不够,我们还需要确定联通判断的条件:
public int numIslands(char[][] grid) {
if (grid == null || grid.length == 0) {
return 0;
}
int nr = grid.length;
int nc = grid[0].length;
int num_islands = 0;
UnionFind uf = new UnionFind(grid);//初始化类
for (int r = 0; r < nr; ++r) {
for (int c = 0; c < nc; ++c) {
if (grid[r][c] == '1') {
grid[r][c] = '0';
//标记点,并向四周扩散,如果四周存在,且为陆地
//比较并连接两块陆地。
if (r - 1 >= 0 && grid[r-1][c] == '1') {
uf.union(r * nc + c, (r-1) * nc + c);
}
if (r + 1 < nr && grid[r+1][c] == '1') {
uf.union(r * nc + c, (r+1) * nc + c);
}
if (c - 1 >= 0 && grid[r][c-1] == '1') {
uf.union(r * nc + c, r * nc + c - 1);
}
if (c + 1 < nc && grid[r][c+1] == '1') {
uf.union(r * nc + c, r * nc + c + 1);
}
}
}
}
return uf.getCount();
}