LINPACK、BLAS、ATLAS、LAPACK、MKL、NPB
以下除了MKL、NPB,其余Benchmarks介绍均来自 http://www.netlib.org/master_counts2.html
LINPACK is a collection of Fortran subroutines that analyze and solve linear equations and linear least-squares problems. The package solves linear systems whose matrices are general, banded, symmetric indefinite, symmetric positive definite, triangular, and tridiagonal square. In addition, the package computes the QR and singular value decompositions of rectangular matrices and applies them to least-squares problems. LINPACK uses column-oriented algorithms to increase efficiency by preserving locality of reference.
LINPACK was designed for supercomputers in use in the 1970s and early 1980s. LINPACK has been largely superceded by LAPACK, which has been designed to run efficiently on shared-memory, vector supercomputers.
The BLAS (Basic Linear Algebra Subprograms) are routines that provide standard building blocks for performing basic vector and matrix operations. The Level 1 BLAS perform scalar, vector and vector-vector operations, the Level 2 BLAS perform matrix-vector operations, and the Level 3 BLAS perform matrix-matrix operations. Because the BLAS are efficient, portable, and widely available, they are commonly used in the development of high quality linear algebra software, LAPACK for example.
The ATLAS (Automatically Tuned Linear Algebra Software) project is an ongoing research effort focusing on applying empirical techniques in order to provide portable performance. At present, it provides C and Fortran77 interfaces to a portably efficient BLAS implementation, as well as a few routines from LAPACK. ATLAS is often recommended as a way to automatically generate an optimized BLAS library.
LAPACK is written in Fortran 90 and provides routines for solving systems of simultaneous linear equations, least-squares solutions of linear systems of equations, eigenvalue problems, and singular value problems. The associated matrix factorizations (LU, Cholesky, QR, SVD, Schur, generalized Schur) are also provided, as are related computations such as reordering of the Schur factorizations and estimating condition numbers. Dense and banded matrices are handled, but not general sparse matrices. In all areas, similar functionality is provided for real and complex matrices, in both single and double precision.
The original goal of the LAPACK project was to make the widely used EISPACK and LINPACK libraries run efficiently on shared-memory vector and parallel processors. On these machines, LINPACK and EISPACK are inefficient because their memory access patterns disregard the multi-layered memory hierarchies of the machines, thereby spending too much time moving data instead of doing useful floating-point operations. LAPACK addresses this problem by reorganizing the algorithms to use block matrix operations, such as matrix multiplication, in the innermost loops. These block operations can be optimized for each architecture to account for the memory hierarchy, and so provide a transportable way to achieve high efficiency on diverse modern machines. We use the term “transportable” instead of “portable” because, for fastest possible performance, LAPACK requires that highly optimized block matrix operations be already implemented on each machine.
LAPACK routines are written so that a**s much as possible of the computation is performed by calls to the Basic Linear Algebra Subprograms (BLAS)**. LAPACK is designed at the outset to exploit the Level 3 BLAS — a set of specifications for Fortran subprograms that do various types of matrix multiplication and the solution of triangular systems with multiple right-hand sides. Because of the coarse granularity of the Level 3 BLAS operations, their use promotes high efficiency on many high-performance computers, particularly if specially coded implementations are provided by the manufacturer.
Highly efficient machine-specific implementations of the BLAS are available for many modern high-performance computers. For details of known vendor- or ISV-provided BLAS, consult the BLAS FAQ. Alternatively, the user can download ATLAS to automatically generate an optimized BLAS library for the architecture.
Intel Math Kernel Library (Intel MKL) is a library of optimized math routines for science, engineering, and financial applications. Core math functions include BLAS, LAPACK, ScaLAPACK, sparse solvers, fast Fourier transforms, and vector math. The routines in MKL are hand-optimized specifically for Intel processors.
The NAS Parallel Benchmarks (NPB) are a small set of programs designed to help evaluate the performance of parallel supercomputers. The benchmarks are derived from computational fluid dynamics (CFD) applications and consist of five kernels and three pseudo-applications in the original “pencil-and-paper” specification (NPB 1). The benchmark suite has been extended to include new benchmarks for unstructured adaptive mesh, parallel I/O, multi-zone applications, and computational grids. Problem sizes in NPB are predefined and indicated as different classes. Reference implementations of NPB are available in commonly-used programming models like MPI and OpenMP (NPB 2 and NPB 3).