d2lzh_pytorch

学习出处:http://tangshusen.me/Dive-into-DL-PyTorch/#/
常用的函数

#!/usr/bin/env python
# coding: utf-8

import collections
import math
import os
import random
import sys
import tarfile
import time

from IPython import display
from matplotlib import pyplot as plt
import torch
from torch import nn
import torch.nn.functional as F
import torchvision
import torchvision.transforms as transforms
import numpy as np

def load_data_fashion_mnist(batch_size, root='~/Datasets/FashionMNIST'):
    """Download the fashion mnist dataset and then load into memory."""
    transform = transforms.ToTensor()
    mnist_train = torchvision.datasets.FashionMNIST(root=root, train=True, download=True, transform=transform)
    mnist_test = torchvision.datasets.FashionMNIST(root=root, train=False, download=True, transform=transform)
    if sys.platform.startswith('win'):
        num_workers = 0  # 0表示不用额外的进程来加速读取数据
    else:
        num_workers = 4
    train_iter = torch.utils.data.DataLoader(mnist_train, batch_size=batch_size, shuffle=True, num_workers=num_workers)
    test_iter = torch.utils.data.DataLoader(mnist_test, batch_size=batch_size, shuffle=False, num_workers=num_workers)

    return train_iter, test_iter

def sgd(params, lr, batch_size): 
    for param in params:
        param.data -= lr * param.grad / batch_size # 注意这里更改param时用的param.data

def get_fashion_mnist_labels(labels):
    text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat',
                   'sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']
    return [text_labels[int(i)] for i in labels]
def use_svg_display():
    # 用矢量图显示
    display.set_matplotlib_formats('svg')
def set_figsize(figsize=(3.5, 2.5)):
    use_svg_display()
    # 设置图的尺寸
    plt.rcParams['figure.figsize'] = figsize

    
# 定义一个可以在一行里画出多张图像和对应标签的函数。
def show_fashion_mnist(images, labels):
    use_svg_display()
    
    # 这里的_表示我们忽略(不使用)的变量
    _, figs = plt.subplots(1, len(images), figsize=(12, 12))
    for f, img, lbl in zip(figs, images, labels):
        f.imshow(img.view((28, 28)).numpy())
        f.set_title(lbl)
        f.axes.get_xaxis().set_visible(False)
        f.axes.ge#对x的形状转换的这个功能自定义一个FlattenLayer
    
    
#对x的形状转换的这个功能自定义一个FlattenLayer
class FlattenLayer(nn.Module):
    def __init__(self):
        super(FlattenLayer, self).__init__()
    def forward(self, x):       # x shape: (batch, *, *, ...)
        return x.view(x.shape[0], -1)
    

    
# 评价模型net在数据集data_iter上的准确率。
#该函数将被逐步改进:它的完整实现将在“图像增广”一节中描述
def evaluate_accuracy(data_iter, net):
    acc_sum, n = 0.0, 0
    for X, y in data_iter:
        acc_sum += (net(X).argmax(dim=1) == y).float().sum().item() #按批量进行比较
        n += y.shape[0]
    return acc_sum / n


# 进行模型训练
def train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size,
              params=None, lr=None, optimizer=None):
    for epoch in range(num_epochs):
        train_l_sum, train_acc_sum, n = 0.0, 0.0, 0
        for X, y in train_iter:
            y_hat = net(X)
            l = loss(y_hat, y).sum()

            # 梯度清零
            if optimizer is not None:
                optimizer.zero_grad()
            elif params is not None and params[0].grad is not None:
                for param in params:
                    param.grad.data.zero_()

            l.backward()
            if optimizer is None:
                sgd(params, lr, batch_size)
            else:
                optimizer.step()  # “softmax回归的简洁实现”一节将用到


            train_l_sum += l.item()  #item(), 它可以将一个标量Tensor转换成一个Python number:
            train_acc_sum += (y_hat.argmax(dim=1) == y).sum().item()
            n += y.shape[0]
        test_acc = evaluate_accuracy(test_iter, net)
        print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f'
              % (epoch + 1, train_l_sum / n, train_acc_sum / n, test_acc))


你可能感兴趣的:(Pytorch学习)