数据处理——CountVectorizer、TfidfTransformer、TfidfVectorizer

1. CountVectorizer原理

CountVectorizer是通过fit_transform函数将文本中的词语转换为词频矩阵

1.1 举个栗子

from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer, TfidfTransformer#导入包
corpus = [
    'This is the first document.',
    'This is the second second document.',
    'And the third one.',
    'Is this the first document?',
]#文本数据
vectorizer = CountVectorizer()#初始化
count = vectorizer.fit_transform(corpus)#将文本中的词语转换为词频矩阵
print(vectorizer.get_feature_names())#看到所有文本的关键字  

[‘and’, ‘document’, ‘first’, ‘is’, ‘one’, ‘second’, ‘the’, ‘third’, ‘this’]

print(vectorizer.vocabulary_)#将文本中出现的所有单词编号,如下:
{'this': 8, 'is': 3, 'the': 6, 'first': 2, 'document': 1, 'second': 5, 'and': 0, 'third': 7, 'one': 4}
print(count.toarray())#可看到词频矩阵的结果
[[0 1 1 1 0 0 1 0 1]
 [0 1 0 1 0 2 1 0 1]
 [1 0 0 0 1 0 1 1 0]
 [0 1 1 1 0 0 1 0 1]]

2. TfidfTransformer原理

统计CountVectorizer中每个词语的tf-idf权值
TF-IDF的主要思想是:如果某个词或短语在一篇文章中出现的频率TF高,并且在其他文章中很少出现,则认为此词或者短语具有很好的类别区分能力,适合用来分类。TF-IDF实际上是:TF * IDF。

2.1 举个栗子

transformer = TfidfTransformer()
tfidf_matrix = transformer.fit_transform(count)
print(tfidf_matrix.toarray())
[[ 0.          0.43877674  0.54197657  0.43877674  0.          0. 			  0.35872874  0.          0.43877674]
 [ 0.          0.27230147  0.          0.27230147  0.          0.85322574	  0.22262429  0.          0.27230147]
 [ 0.55280532  0.          0.          0.          0.55280532  0.		 	  0.28847675  0.55280532  0.        ]
 [ 0.          0.43877674  0.54197657  0.43877674  0.          0. 			  0.35872874  0.          0.43877674]]

3. TfidfVectorizer原理

可以把CountVectorizer, TfidfTransformer合并起来,直接生成tfidf值

3.1 举个栗子

TfidfVectorizer的关键参数:

  • max_df:这个给定特征可以应用在 tf-idf 矩阵中,用以描述单词在文档中的最高出现率。假设一个词(term)在 80% 的文档中都出现过了,那它也许(在剧情简介的语境里)只携带非常少信息。
  • min_df:可以是一个整数(例如5)。意味着单词必须在 5 个以上的文档中出现才会被纳入考虑。设置为 0.2;即单词至少在 20% 的文档中出现 。
  • ngram_range:这个参数将用来观察一元模型(unigrams),二元模型( bigrams) 和三元模型(trigrams)。参考n元模型(n-grams)。
tfidf_vec = TfidfVectorizer() 
tfidf_matrix = tfidf_vec.fit_transform(corpus)
print(tfidf_vec.get_feature_names())
print(tfidf_vec.vocabulary_)
print(tfidf_matrix.toarray())

['and', 'document', 'first', 'is', 'one', 'second', 'the', 'third', 'this']
{'this': 8, 'is': 3, 'the': 6, 'first': 2, 'document': 1, 'second': 5, 'and': 0, 'third': 7, 'one': 4}
[[ 0.          0.43877674  0.54197657  0.43877674  0.          0. 	    		 0.35872874  0.          0.43877674]
 [ 0.          0.27230147  0.          0.27230147  0.          0.85322574   	0.22262429  0.          0.27230147]
 [ 0.55280532  0.          0.          0.          0.55280532  0.   			0.28847675  0.55280532  0.        ]
 [ 0.          0.43877674  0.54197657  0.43877674  0.          0.   			0.35872874  0.          0.43877674]]

CountVectorizer文本特征提取

你可能感兴趣的:(机器学习算法)