http://blog.csdn.net/yang_xian521/article/details/6901762
基于特征点的图像匹配是图像处理中经常会遇到的问题,手动选取特征点太麻烦了。比较经典常用的特征点自动提取的办法有Harris特征、SIFT特征、SURF特征。
先介绍利用SURF特征的特征描述办法,其操作封装在类SurfFeatureDetector中,利用类内的detect函数可以检测出SURF特征的关键点,保存在vector容器中。第二部利用SurfDescriptorExtractor类进行特征向量的相关计算。将之前的vector变量变成向量矩阵形式保存在Mat中。最后强行匹配两幅图像的特征向量,利用了类BruteForceMatcher中的函数match。代码如下:
/**
* @file SURF_descriptor
* @brief SURF detector + descritpor + BruteForce Matcher + drawing matches with OpenCV functions
* @author A. Huaman
*/
#include
#include
#include "opencv2/core/core.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/highgui/highgui.hpp"
using namespace cv;
void readme();
/**
* @function main
* @brief Main function
*/
int main( int argc, char** argv )
{
if( argc != 3 )
{ return -1; }
Mat img_1 = imread( argv[1], CV_LOAD_IMAGE_GRAYSCALE );
Mat img_2 = imread( argv[2], CV_LOAD_IMAGE_GRAYSCALE );
if( !img_1.data || !img_2.data )
{ return -1; }
//-- Step 1: Detect the keypoints using SURF Detector
int minHessian = 400;
SurfFeatureDetector detector( minHessian );
std::vector keypoints_1, keypoints_2;
detector.detect( img_1, keypoints_1 );
detector.detect( img_2, keypoints_2 );
//-- Step 2: Calculate descriptors (feature vectors)
SurfDescriptorExtractor extractor;
Mat descriptors_1, descriptors_2;
extractor.compute( img_1, keypoints_1, descriptors_1 );
extractor.compute( img_2, keypoints_2, descriptors_2 );
//-- Step 3: Matching descriptor vectors with a brute force matcher
BruteForceMatcher< L2 > matcher;
std::vector< DMatch > matches;
matcher.match( descriptors_1, descriptors_2, matches );
//-- Draw matches
Mat img_matches;
drawMatches( img_1, keypoints_1, img_2, keypoints_2, matches, img_matches );
//-- Show detected matches
imshow("Matches", img_matches );
waitKey(0);
return 0;
}
/**
* @function readme
*/
void readme()
{ std::cout << " Usage: ./SURF_descriptor " << std::endl; }
//-- Step 3: Matching descriptor vectors using FLANN matcher
FlannBasedMatcher matcher;
std::vector< DMatch > matches;
matcher.match( descriptors_1, descriptors_2, matches );
double max_dist = 0; double min_dist = 100;
//-- Quick calculation of max and min distances between keypoints
for( int i = 0; i < descriptors_1.rows; i++ )
{ double dist = matches[i].distance;
if( dist < min_dist ) min_dist = dist;
if( dist > max_dist ) max_dist = dist;
}
printf("-- Max dist : %f \n", max_dist );
printf("-- Min dist : %f \n", min_dist );
//-- Draw only "good" matches (i.e. whose distance is less than 2*min_dist )
//-- PS.- radiusMatch can also be used here.
std::vector< DMatch > good_matches;
for( int i = 0; i < descriptors_1.rows; i++ )
{ if( matches[i].distance < 2*min_dist )
{ good_matches.push_back( matches[i]); }
}
//-- Draw only "good" matches
Mat img_matches;
drawMatches( img_1, keypoints_1, img_2, keypoints_2,
good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),
vector(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );
//-- Show detected matches
imshow( "Good Matches", img_matches );
//-- Localize the object from img_1 in img_2
std::vector obj;
std::vector scene;
for( int i = 0; i < good_matches.size(); i++ )
{
//-- Get the keypoints from the good matches
obj.push_back( keypoints_1[ good_matches[i].queryIdx ].pt );
scene.push_back( keypoints_2[ good_matches[i].trainIdx ].pt );
}
Mat H = findHomography( obj, scene, CV_RANSAC );
//-- Get the corners from the image_1 ( the object to be "detected" )
Point2f obj_corners[4] = { cvPoint(0,0), cvPoint( img_1.cols, 0 ), cvPoint( img_1.cols, img_1.rows ), cvPoint( 0, img_1.rows ) };
Point scene_corners[4];
//-- Map these corners in the scene ( image_2)
for( int i = 0; i < 4; i++ )
{
double x = obj_corners[i].x;
double y = obj_corners[i].y;
double Z = 1./( H.at(2,0)*x + H.at(2,1)*y + H.at(2,2) );
double X = ( H.at(0,0)*x + H.at(0,1)*y + H.at(0,2) )*Z;
double Y = ( H.at(1,0)*x + H.at(1,1)*y + H.at(1,2) )*Z;
scene_corners[i] = cvPoint( cvRound(X) + img_1.cols, cvRound(Y) );
}
//-- Draw lines between the corners (the mapped object in the scene - image_2 )
line( img_matches, scene_corners[0], scene_corners[1], Scalar(0, 255, 0), 2 );
line( img_matches, scene_corners[1], scene_corners[2], Scalar( 0, 255, 0), 2 );
line( img_matches, scene_corners[2], scene_corners[3], Scalar( 0, 255, 0), 2 );
line( img_matches, scene_corners[3], scene_corners[0], Scalar( 0, 255, 0), 2 );
//-- Show detected matches
imshow( "Good Matches & Object detection", img_matches );
除了利用Harris进行角点检测,还可以利用Shi-Tomasi方法进行角点检测。使用函数goodFeaturesToTrack对角点进行检测,效果也不错。也可以自己制作角点检测的函数,需要用到cornerMinEigenVal函数和minMaxLoc函数,最后的特征点选取,判断条件要根据自己的情况编辑。如果对特征点,角点的精度要求更高,可以用cornerSubPix函数将角点定位到子像素。