description
We give the following inductive definition of a “regular brackets” sequence:
For instance, all of the following character sequences are regular brackets sequences:
( ), [ ], ( ( ) ), ( )[ ], ( )[ ( ) ]
while the following character sequences are not:
(, ], ) (, ( [ ) ], ( [ ( ]
Given a brackets sequence of characters a1a2 … an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1, i2, …, im where 1 ≤ i1 < i2 < … < im ≤ n, ai1ai2 … aim is a regular brackets sequence.
Given the initial sequence ([([]])]
, the longest regular brackets subsequence is [([])]
.
Input
The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters (
, )
, [
, and ]
; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.
Output
For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.
Sample Input
((()))
()()()
([]])
)[)(
([][][)
end
Sample Output
6
4
6
0
6
题意:
给定一串括号,求其最大匹配长度
分析:
区间dp,用dp[i][j]表示i~j区间上的最大匹配数,据题意可知,当i==j时,dp[i][j]==0,
当i!=j时,假设str[i]和str[j]匹配,dp[i][j]=dp[i+1][j-1]+1,然后在区间k(i~j)之间寻找s[i]和s[k]匹配,状态转移 dp[i][j]=max(dp[i][j],dp[i][k]+dp[k+1][j]+1);
注意:
最外层循环从n开始递减,即控制匹配长度由小到大
代码:
#include
#include
#include
using namespace std;int n;
string str;
int dp[105][105];bool is_match(int i, int j) {
if ((str[i] == '('&&str[j] == ')') || (str[i] == '['&&str[j] == ']'))
return true;
return false;
}
int solve() {
n = str.length();
memset(dp, 0, sizeof(dp));for (int i = n - 1; i >= 0; i--)
for (int j = i + 1; j < n; j++) {
if (is_match(i, j))
dp[i][j] = dp[i + 1][j - 1] + 1;
for (int k = i; k < j; k++)
dp[i][j] = max(dp[i][j], dp[i][k] + dp[k+1][j]);
}
return dp[0][n - 1];
}int main()
{
while (cin >> str) {
if (str == "end")
break;
cout << 2 * solve() << endl;
}
return 0;
}