题目传送门
We give the following inductive definition of a “regular brackets” sequence:
the empty sequence is a regular brackets sequence,
if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
if a and b are regular brackets sequences, then ab is a regular brackets sequence.
no other sequence is a regular brackets sequence
For instance, all of the following character sequences are regular brackets sequences:
(), [], (()), ()[], ()[()]
while the following character sequences are not:
(, ], )(, ([)], ([(]
Given a brackets sequence of characters a1a2 … an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1, i2, …, im where 1 ≤ i1 < i2 < … < im ≤ n, ai1ai2 … aim is a regular brackets sequence.
Given the initial sequence ([([]])], the longest regular brackets subsequence is [([])].
The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters (, ), [, and ]; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.
For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.
((()))
()()()
([]])
)[)(
([][][)
end
6
6
4
0
6
用以下方式定义合法的括号字符串
举个栗子, 下列字符串都是合法的括号字符串:
(), [], (()), ([]), ()[], ()[()]
下面这些不是:
(, [, ), )(, ([)], ([(]
给出一个由字符’(’, ‘)’, ‘[’, 和’]'构成的字符串. 你的任务是找出一个最长的合法字符串的长度,使这个的字符串是给出的字符串的子序列。对于字符串a1 a2 … an, b1 b2 … bm 当且仅当对于1 = i1 < i2 < … < in = m, 使得对于所有1 = j = n,aj = bij时, aj是bi的子序列
定义dp [ i ] [ j ] 为串中第 i 个到第 j 个括号的最大匹配数目
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;
#define ios ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
typedef long long ll;
const int INF = 0x7fffffff;
const int MAXN = 120;
int dp[MAXN][MAXN];// 区间i->j匹配数
string s;
bool check(char a, int b)
{
if (a == '(' && b == ')') return true;
else if (a == '[' && b == ']') return true;
else return false;
}
int main() {
ios;
while (cin >> s) {
if (s == "end")
break;
memset(dp, 0, sizeof(dp));
for (int len = 2; len <= s.length(); len++)
for (int i = 0; i <= s.length(); i++) {
int j = i + len - 1;
if (j > s.length())
break;
if (check(s[i], s[j]))
dp[i][j] = dp[i + 1][j - 1] + 2;
for (int k = i + 1; k < j; k++) {
dp[i][j] = max(dp[i][j], dp[i][k] + dp[k][j]);
}
}
cout << dp[0][s.length() - 1] << endl;
}
return 0;
}