- pytorch正向传播没问题,loss.backward()使定义的神经网络中权重参数变为nan
加速却甩不掉伤悲
pytorch神经网络人工智能
记录一个非常坑爹的bug:loss回传导致神经网络中一个linear层的权重参数变为nan1.首先loss值是正常数值;2.查了好多网上的解决办法:检查原始输入神经网络数据有没有nan值,初始化权重参数,使用relu激活函数,梯度裁剪,降低优化器的学习率等等都没解决,个人认为这些应该影响不大,一般不会出问题;3.最后是使用如下异常检测:检测在loss回传过程中哪一块出现了问题torch.autog
- 工信教考 | AI智能体应用工程师(模拟试题)
人工智能-猫猫
人工智能开源自然语言处理语言模型架构
关于AI智能体工程师的模拟试题,下面根据AI智能体工程师所需掌握的知识和技能,设计一些模拟题型的示例。这些题目旨在考察应试者在人工智能、机器学习、深度学习、算法设计、系统开发等方面的能力。一、选择题无监督学习常用于哪些任务?(单选)A.回归分析B.聚类分析C.分类预测D.序列预测答案:B解析:无监督学习常用于聚类、降维、异常检测等任务,如市场分割、数据可视化等。以下哪种激活函数常用于分类问题的输出
- 数据分析-13-时间序列异常值检测的类型及常见的检测方法
皮皮冰燃
数据分析数据分析
参考时间序列异常值的分类及检测参考异常值数据预警分析1时间序列异常的类型时间序列异常检测是数据处理和分析的重要环节,广泛应用于量化交易、网络安全检测、自动驾驶汽车和大型工业设备日常维护等领域。在时间序列数据中,异常通常指的是与正常数据模式显著不同的数据点,可能由系统故障、错误或外部干扰引起。异常数据,也称为离群点,是指在数据集中与其他数据点明显不同的样本。这些数据点往往不符合预期的模式或行为,可能
- 【大数据】孤立森林算法
大雨淅淅
大数据算法python大数据人工智能
目录一、孤立森林算法概述二、孤立森林算法优缺点和改进2.1孤立森林算法优点2.2孤立森林算法缺点2.3孤立森林算法改进三、孤立森林算法代码实现3.1孤立森林算法python实现3.2孤立森林算法JAVA实现3.3孤立森林算法C++实现四、孤立森林算法应用一、孤立森林算法概述孤立森林算法是一种用于异常检测的机器学习算法。它基于这样的直觉:异常点是数据中的少数派,它们在特征空间中的分布与正常数据点不同
- 基于STM32的工厂安全监测系统:采用FreeRTOS、MQTT协议、InfluxDB存储与Grafana可视化,实现实时数据监测与异常检测算法优化的综合解决方案(代码示例)
极客小张
stm32安全grafana算法物联网c++异常检测算法
一、项目概述项目目标与用途随着工业自动化的不断推进,工厂的安全问题成为了企业管理者关注的重点。工厂中的温度、湿度、气体浓度、烟雾、压力等环境参数直接影响着生产的安全性和产品的质量。本项目旨在设计并实现一个嵌入式工厂安全监测系统,实时监测工厂环境中的关键安全参数,通过无线通信模块将数据传输到云端进行存储和分析,从而实现对工厂环境的智能化监控和预警。项目解决的问题与价值实时监测:实时采集工厂内的温度、
- 电力行业电气领域相关数据集下载地址汇总输电线路变电站电网应用数据集汇总(全网最全)
FL1623863129
数据集目标检测
在电力行业电气领域,数据集扮演着至关重要的角色。这些数据集涵盖了从发电到用电的各个环节,包括输电线路图像、变电站监测、电力负荷预测等多样化内容。例如,输电线路图像数据集通过无人机或直升机拍摄,包含了杆塔、绝缘子、导线等详细图像,为目标检测、分类和异常检测提供了丰富的素材。此外,还有针对变电站烟火检测、导线破损检测等特定任务的数据集,这些数据集通过收集实际场景中的图像和视频,帮助研究人员训练更加精准
- 周报 | 24.8.12-24.8.18文章汇总
双木的木
深度学习拓展阅读深度学习人工智能transformer算法pythonstablediffusionllama
为了更好地整理文章和发表接下来的文章,以后每周都汇总一份周报。周报|24.8.5-24.8.11文章汇总-CSDN博客OpenCV与AI深度学习|实战|使用YoloV8实例分割识别猪的姿态(含数据集)-CSDN博客极市平台|异常检测开源数据集汇总-CSDN博客程序员学长|快速学习一个算法,集成学习-CSDN博客Coggle数据科学|行业落地分享:大模型RAG汽车应用实践_rag中的意图识别-CSD
- 异常GPT:使用LVLMs检测工业异常
DUT_LYH
gpt人工智能算法
AnomalyGPT:利用LVLMs进行工业异常检测摘要本文介绍了一种名为AnomalyGPT的新型工业异常检测方法,该方法基于大型视觉语言模型(LVLMs)。AnomalyGPT能够检测并定位图像中的异常,无需手动设置阈值。此外,AnomalyGPT还可以提供与图像相关的详细信息,以交互方式与用户进行交流。本文详细阐述了AnomalyGPT的模型架构、解码器、提示学习器以及异常模拟方法,并在Vi
- 基于极限树特征递归消除和LightGBM的异常检测模型
宋罗世家技术屋
信息资源管理与发展专栏算法python
摘要入侵检测数据维数大、数据样本不均衡、数据集分散性大的问题严重影响分类性能,为了解决该问题,文章提出基于极限随机树的特征递归消除(ExtraTrees-RecursiveFeatureElimination,ET-RFE)和LightGBM(LGBM)的入侵检测方法。首先对网络数据进行独热编码重构,在数据级层面均衡少量样本的攻击类别;其次,使用基于ET-RFE对流量特征进行降维处理,寻找含有信息
- 探索LightGBM:监督式聚类与异常检测
Echo_Wish
Python笔记Python算法聚类数据挖掘机器学习
导言监督式聚类和异常检测是在监督学习框架下进行的一种特殊形式的数据分析技术。在Python中,LightGBM提供了一些功能来执行监督式聚类和异常检测任务。本教程将详细介绍如何使用LightGBM进行监督式聚类和异常检测,并提供相应的代码示例。监督式聚类监督式聚类是一种将聚类任务结合到监督学习框架中的技术。LightGBM提供了一种基于决策树的监督式聚类方法。以下是一个简单的示例:importli
- Lag-Llama:第一个时间序列预测的开源基础模型介绍和性能测试
deephub
llama深度学习时间序列基础模型
2023年10月,我们发表了一篇关于TimeGPT的文章,TimeGPT是时间序列预测的第一个基础模型之一,具有零样本推理、异常检测和共形预测能力。虽然TimeGPT是一个专有模型,只能通过API访问。但是它还是引发了对时间序列基础模型的更多研究。到了2024年2月,已经有了一个用于时间序列预测的开源基础模型:laglllama。在原论文《Lag-Llama:TowardsFoundationMo
- 基于UI交互意图理解的异常检测方法
美团测试
美团到店平台技术部/质量工程部与复旦大学周扬帆教授团队开展了科研合作,基于业务实际场景,自主研发了多模态UI交互意图识别模型以及配套的UI交互框架。本文从大前端质量保障领域的痛点出发,介绍了UI交互意图识别的方法设计与实现。基于UI交互意图编写的测试用例在实际业务中展现出了可以跨端、跨App的泛化能力,希望可以为从事相关工作的同学带来一些启发或帮助。1.背景近年来,随着美团多种业务线的扩充和迭代,
- Lag-Llama:第一个时间序列预测的开源基础模型介绍和性能测试
人工智能深度学习python
2023年10月,我们发表了一篇关于TimeGPT的文章,TimeGPT是时间序列预测的第一个基础模型之一,具有零样本推理、异常检测和共形预测能力。虽然TimeGPT是一个专有模型,只能通过API访问。但是它还是引发了对时间序列基础模型的更多研究。到了2024年2月,已经有了一个用于时间序列预测的开源基础模型:laglllama。在原论文《Lag-Llama:TowardsFoundationMo
- 异常检测-基于统计学的方法-学习笔记-2
Rank_Fan007
异常检测的学习笔记并非原创,而是搜索各位大佬的帖子整理而得。如有冒犯,请联系我。1.概述统计学⽅法对数据的正常性做出假定。它们假定正常的数据对象由⼀个统计模型产⽣,而不遵守该模型的数据是异常点。异常检测的统计学⽅法的⼀般思想是:学习⼀个拟合给定数据集的⽣成模型,然后识别该模型低概率区域中的对象,把它们作为异常点。根据如何指定和学习模型,异常检测的统计学⽅法可以划分为两个主要类型:参数⽅法和⾮参数⽅
- Deep Learning for Anomaly Detection: A Review(翻译)
appron
入侵检测异常检测网络攻击检测
前言一、引言二、异常检测:问题的复杂性和挑战1.主要问题复杂性2.深度异常检测所面临的主要挑战三、用深度异常检测应对挑战1.预备工作2.深度异常检测方法的分类四.深度学习的特征提取1.预训练模型2.特定的特征提取模型五.学习常态的特征表征(特征提取器即分类器,即时连接同步训练的特征提取器和分类器)1.通用规范特征学习1.1自动编码器。(特征提取器即分类器)1.2生成对抗网络。(AnoGAN,f-A
- ICCV 2023 | 腾讯优图16篇论文入选!轻量级主干、异常检测和扩散模型等方向
Amusi(CVer)
点击下方卡片,关注“CVer”公众号AI/CV重磅干货,第一时间送达点击进入—>【计算机视觉和论文写作】交流群来源:腾讯优图实验室作为全球计算机领域顶级的学术会议之一,ICCV2023(InternationalConferenceonComputerVision)国际计算机视觉大会将于今年10月在法国巴黎举行。近日,ICCV公布了论文录用结果,本届会议共有8068篇投稿,接收率为26.8%。今年
- ICCV 2023 | 8篇论文看扩散模型diffusion用于图像检测任务:动作检测、目标检测、异常检测、deepfake检测...
机器学习与AI生成创作
目标检测人工智能计算机视觉
1、动作检测DiffTAD:TemporalActionDetectionwithProposalDenoisingDiffusion基于扩散方法提出一种新的时序动作检测(TAD)算法,简称DiffTAD。以随机时序proposals作为输入,可以在未修剪的长视频中准确生成动作proposals。从生成建模的视角,与先前的判别学习方法不同。首先将真实proposals从正向扩散到随机proposa
- 智能运维哪些算法?智能运维包含哪些
云呐AIOps
智能运维AIOps运维管理系统运维
在智能运维领域,详细介绍一些关键的算法,并阐述这些算法是如何被应用于智能运维系统中的。此外,关于智能运维中包含的主要组成部分或功能模块,以及它们各自的作用和重要性。如何应用再场景中应用在智能运维行业,一些关键算法包括:机器学习算法:如决策树、随机森林、svm算法等,从历史数据中学习方法和规律,预测未来的特点和故障。在智能操作和维护系统中,这些算法被应用于故障预测、异常检测、资源调度等方面,以帮助操
- NeurIPS 2023 时间序列相关论文总结
STLearner
大数据智慧城市pytorch数据挖掘论文阅读深度学习
祝大家中秋国庆双节快乐!NeurIPS2023将于11月28日到12月9日在美国路易斯安那州新奥尔良举行。根据官方公布的邮件显示,今年共有12343篇投稿,接受率为26.1%,官网显示一共有3564篇论文。本文总结了NeurIPS23时间序列(不含时空数据,已经另外总结)的相关论文。包括时间序列预测,分类,异常检测,因果发现,交通,医疗等领域时间序列应用和大模型在时间序列问题建模的探索等方向。1.
- WWW 2024 | 时间序列(Time Series)和时空数据(Spatial-Temporal)论文总结
STLearner
时空数据人工智能机器学习深度学习数据挖掘智慧城市论文阅读
WWW2024已经放榜,本次会议共提交了2008篇文章,researchtracks共录用约400多篇论文,录用率为20.2%。本次会议将于2024年5月13日-17日在新加坡举办。本文总结了WWW2024有关时间序列(TimeSeries)和时空数据(Spatial-Temporal)的相关文章,部分挂在了arXiv上。时间序列Topic:时序预测,异常检测,时域频域,大模型等时空数据Topic
- 梯度提升树系列6——GBDT在异常检测领域的应用
theskylife
数据挖掘机器学习数据挖掘GBDT分类python
目录写在开头1异常检测的基本概念1.1定义和目标1.2GBDT在异常检测中的适用性2信用卡欺诈检测案例分析2.1场景介绍2.2收集数据和特征工程2.3进行异常值识别2.4模型效果评估2.5模型优化3策略和技巧4面临的挑战和解决方案4.1数据不平衡4.2过拟合4.3模型解释性写在最后在如今数据驱动的时代,异常检测成为了保障系统安全的关键技术,尤其在金融安全、网络安全等领域中扮演着至关重要的角色。梯度
- 时间序列异常检测论文TranAD: Deep Transformer Networks for Anomaly Detection in Multivariate Time Series Data
蛐蛐蛐
transformer深度学习人工智能
由于工作需要,想用一下这篇论文的方法,但感觉其代码还是有很多不清除的地方,简单总结一下。关于论文的内容介绍,可以参考:【VLDB】融合transformer和对抗学习的多变量时间序列异常检测算法TranAD论文和代码解读-知乎说得比较清楚了,我就不重复了。但是读代码的时候还是有很多不明白的地方。这里以Data文件夹下的SWaT数据集为例进行分析。首先,打开train.xlsx,可以看到就是两个me
- Python报No such file or directory: ‘science‘的解决方法
蛐蛐蛐
Python技巧论文点评python开发语言
接上一篇博文:时间序列异常检测论文TranAD:DeepTransformerNetworksforAnomalyDetectioninMultivariateTimeSeriesData-CSDN博客还是想看看这篇论文的可视化结果。但是当我重新运行原版代码的时候,会报错:FileNotFoundError:[Errno2]Nosuchfileordirectory:'science'Theabo
- Wazuh功能——异常和恶意软件检测
Threathunter
异常检测是指在系统中发现与预期行为不匹配的模式的行为。一旦恶意软件(例如rootkit)安装在系统上,它就会修改系统以隐藏自己,不让用户看到。尽管恶意软件使用多种技术来实现这一点,Wazuh却使用了一种广谱的方法来发现异常模式,表明可能存在入侵者。负责这项任务的主要组件是rootcheck,然而,Syscheck也扮演着重要的角色。一、怎样工作1、文件完整性监测恶意软件可以替换其主机系统上的文件、
- 【人工智能】神奇的Embedding:文本变向量,大语言模型智慧密码解析(10)
魔道不误砍柴功
AI大模型人工智能embedding语言模型
什么是嵌入?OpenAI的文本嵌入衡量文本字符串的相关性。嵌入通常用于:Search搜索(结果按与查询字符串的相关性排序)Clustering聚类(文本字符串按相似性分组)Recommendations推荐(推荐具有相关文本字符串的条目)Anomalydetection异常检测(识别出相关性很小的异常值)Diversitymeasurement多样性测量(分析相似性分布)Classificatio
- Arxiv网络科学论文摘要15篇(2020-10-21)
ComplexLY
考虑拓扑的图池化网络;因果网络模体:识别A/B测试中的异构溢出效应;关系事件模型与逆强化学习之间的联系,用于表征群体互动序列;不能通过外表来判断用户:了解社交媒体研究中多模式处理中的危害;气候讨论中推文的传播;目标路网中断导致的级联故障;通过基于订阅的频道嵌入来理解YouTube社区;鲁棒的异步和独立于网络的合作学习;通过学习和预测行为进行早期异常检测;Heider与协同演化平衡:从离散到连续相变
- 基于LLM的数据漂移和异常检测
新缸中之脑
LLM
大型语言模型(LLM)的最新进展被证明是许多领域的颠覆性力量(请参阅:通用人工智能的火花:GPT-4的早期实验)。和许多人一样,我们非常感兴趣地关注这些发展,并探索LLM影响数据科学和机器学习领域的工作流程和常见实践的潜力。在我们之前的文章中,我们展示了LLM使用Kaggle竞赛中的表格数据提供预测的潜力。只需很少的努力(即数据清理和/或功能开发),我们基于LLM的模型就可以在几个竞赛参赛作品中获
- 京东数据分析岗面试题目整理
Data地平线
1,怎么做恶意刷单检验分类问题用机器学习方法建模解决,特征有:1)商家特征:商家历史销量、信用、产品类别、发货快递公司等2)用户行为特征:用户信用、下单量、转化率、下单路径、浏览店铺行为、支付账号3)环境特征(主要是避免机器刷单):地区、ip、手机型号等4)异常检测:ip地址经常变动、经常清空cookie信息、账号近期交易成功率上升等5)评论文本检测:刷单的评论文本可能套路较为一致,计算与已标注评
- 2-5 异常检测 Anomaly detection with robust deep autoencoders 笔记
Siberia_
一、基本信息 题目:Anomalydetectionwithrobustdeepautoencoders 期刊/会议:ACMSIGKDD 发表时间:2017年 引用次数:26二、论文总结2.1研究方向 提高自编码模型的抗噪声能力2.2写作动机 受鲁棒PCA的启发,将原始数据分成正常数据和噪声、异常数据两部分,然后进行交替训练。2.3创新之处 除了使用传统的L1正则化去约束噪声部分之外
- [Python] 什么是KMeans聚类算法以及scikit-learn中的KMeans使用案例
老狼IT工作室
python机器学习pythonscikit-learn
什么是无监督学习?无监督学习是机器学习中的一种方法,其主要目的是从无标签的数据集中发现隐藏的模式、结构或者规律。在无监督学习中,算法不依赖于任何先验的标签信息,而是根据数据本身的特征和规律进行学习和推断。无监督学习通常用于聚类、降维、异常检测等任务。在聚类中,算法会将相似的数据点归为一类;在降维中,算法会将高维数据映射到低维空间;在异常检测中,算法会发现与其他数据不同的离群点。无监督学习是与有监督
- 项目中 枚举与注解的结合使用
飞翔的马甲
javaenumannotation
前言:版本兼容,一直是迭代开发头疼的事,最近新版本加上了支持新题型,如果新创建一份问卷包含了新题型,那旧版本客户端就不支持,如果新创建的问卷不包含新题型,那么新旧客户端都支持。这里面我们通过给问卷类型枚举增加自定义注解的方式完成。顺便巩固下枚举与注解。
一、枚举
1.在创建枚举类的时候,该类已继承java.lang.Enum类,所以自定义枚举类无法继承别的类,但可以实现接口。
- 【Scala十七】Scala核心十一:下划线_的用法
bit1129
scala
下划线_在Scala中广泛应用,_的基本含义是作为占位符使用。_在使用时是出问题非常多的地方,本文将不断完善_的使用场景以及所表达的含义
1. 在高阶函数中使用
scala> val list = List(-3,8,7,9)
list: List[Int] = List(-3, 8, 7, 9)
scala> list.filter(_ > 7)
r
- web缓存基础:术语、http报头和缓存策略
dalan_123
Web
对于很多人来说,去访问某一个站点,若是该站点能够提供智能化的内容缓存来提高用户体验,那么最终该站点的访问者将络绎不绝。缓存或者对之前的请求临时存储,是http协议实现中最核心的内容分发策略之一。分发路径中的组件均可以缓存内容来加速后续的请求,这是受控于对该内容所声明的缓存策略。接下来将讨web内容缓存策略的基本概念,具体包括如如何选择缓存策略以保证互联网范围内的缓存能够正确处理的您的内容,并谈论下
- crontab 问题
周凡杨
linuxcrontabunix
一: 0481-079 Reached a symbol that is not expected.
背景:
*/5 * * * * /usr/IBMIHS/rsync.sh
- 让tomcat支持2级域名共享session
g21121
session
tomcat默认情况下是不支持2级域名共享session的,所有有些情况下登陆后从主域名跳转到子域名会发生链接session不相同的情况,但是只需修改几处配置就可以了。
打开tomcat下conf下context.xml文件
找到Context标签,修改为如下内容
如果你的域名是www.test.com
<Context sessionCookiePath="/path&q
- web报表工具FineReport常用函数的用法总结(数学和三角函数)
老A不折腾
Webfinereport总结
ABS
ABS(number):返回指定数字的绝对值。绝对值是指没有正负符号的数值。
Number:需要求出绝对值的任意实数。
示例:
ABS(-1.5)等于1.5。
ABS(0)等于0。
ABS(2.5)等于2.5。
ACOS
ACOS(number):返回指定数值的反余弦值。反余弦值为一个角度,返回角度以弧度形式表示。
Number:需要返回角
- linux 启动java进程 sh文件
墙头上一根草
linuxshelljar
#!/bin/bash
#初始化服务器的进程PId变量
user_pid=0;
robot_pid=0;
loadlort_pid=0;
gateway_pid=0;
#########
#检查相关服务器是否启动成功
#说明:
#使用JDK自带的JPS命令及grep命令组合,准确查找pid
#jps 加 l 参数,表示显示java的完整包路径
#使用awk,分割出pid
- 我的spring学习笔记5-如何使用ApplicationContext替换BeanFactory
aijuans
Spring 3 系列
如何使用ApplicationContext替换BeanFactory?
package onlyfun.caterpillar.device;
import org.springframework.beans.factory.BeanFactory;
import org.springframework.beans.factory.xml.XmlBeanFactory;
import
- Linux 内存使用方法详细解析
annan211
linux内存Linux内存解析
来源 http://blog.jobbole.com/45748/
我是一名程序员,那么我在这里以一个程序员的角度来讲解Linux内存的使用。
一提到内存管理,我们头脑中闪出的两个概念,就是虚拟内存,与物理内存。这两个概念主要来自于linux内核的支持。
Linux在内存管理上份为两级,一级是线性区,类似于00c73000-00c88000,对应于虚拟内存,它实际上不占用
- 数据库的单表查询常用命令及使用方法(-)
百合不是茶
oracle函数单表查询
创建数据库;
--建表
create table bloguser(username varchar2(20),userage number(10),usersex char(2));
创建bloguser表,里面有三个字段
&nbs
- 多线程基础知识
bijian1013
java多线程threadjava多线程
一.进程和线程
进程就是一个在内存中独立运行的程序,有自己的地址空间。如正在运行的写字板程序就是一个进程。
“多任务”:指操作系统能同时运行多个进程(程序)。如WINDOWS系统可以同时运行写字板程序、画图程序、WORD、Eclipse等。
线程:是进程内部单一的一个顺序控制流。
线程和进程
a. 每个进程都有独立的
- fastjson简单使用实例
bijian1013
fastjson
一.简介
阿里巴巴fastjson是一个Java语言编写的高性能功能完善的JSON库。它采用一种“假定有序快速匹配”的算法,把JSON Parse的性能提升到极致,是目前Java语言中最快的JSON库;包括“序列化”和“反序列化”两部分,它具备如下特征:  
- 【RPC框架Burlap】Spring集成Burlap
bit1129
spring
Burlap和Hessian同属于codehaus的RPC调用框架,但是Burlap已经几年不更新,所以Spring在4.0里已经将Burlap的支持置为Deprecated,所以在选择RPC框架时,不应该考虑Burlap了。
这篇文章还是记录下Burlap的用法吧,主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
 
- 【Mahout一】基于Mahout 命令参数含义
bit1129
Mahout
1. mahout seqdirectory
$ mahout seqdirectory
--input (-i) input Path to job input directory(原始文本文件).
--output (-o) output The directory pathna
- linux使用flock文件锁解决脚本重复执行问题
ronin47
linux lock 重复执行
linux的crontab命令,可以定时执行操作,最小周期是每分钟执行一次。关于crontab实现每秒执行可参考我之前的文章《linux crontab 实现每秒执行》现在有个问题,如果设定了任务每分钟执行一次,但有可能一分钟内任务并没有执行完成,这时系统会再执行任务。导致两个相同的任务在执行。
例如:
<?
//
test
.php
- java-74-数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
bylijinnan
java
public class OcuppyMoreThanHalf {
/**
* Q74 数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
* two solutions:
* 1.O(n)
* see <beauty of coding>--每次删除两个不同的数字,不改变数组的特性
* 2.O(nlogn)
* 排序。中间
- linux 系统相关命令
candiio
linux
系统参数
cat /proc/cpuinfo cpu相关参数
cat /proc/meminfo 内存相关参数
cat /proc/loadavg 负载情况
性能参数
1)top
M:按内存使用排序
P:按CPU占用排序
1:显示各CPU的使用情况
k:kill进程
o:更多排序规则
回车:刷新数据
2)ulimit
ulimit -a:显示本用户的系统限制参
- [经营与资产]保持独立性和稳定性对于软件开发的重要意义
comsci
软件开发
一个软件的架构从诞生到成熟,中间要经过很多次的修正和改造
如果在这个过程中,外界的其它行业的资本不断的介入这种软件架构的升级过程中
那么软件开发者原有的设计思想和开发路线
- 在CentOS5.5上编译OpenJDK6
Cwind
linuxOpenJDK
几番周折终于在自己的CentOS5.5上编译成功了OpenJDK6,将编译过程和遇到的问题作一简要记录,备查。
0. OpenJDK介绍
OpenJDK是Sun(现Oracle)公司发布的基于GPL许可的Java平台的实现。其优点:
1、它的核心代码与同时期Sun(-> Oracle)的产品版基本上是一样的,血统纯正,不用担心性能问题,也基本上没什么兼容性问题;(代码上最主要的差异是
- java乱码问题
dashuaifu
java乱码问题js中文乱码
swfupload上传文件参数值为中文传递到后台接收中文乱码 在js中用setPostParams({"tag" : encodeURI( document.getElementByIdx_x("filetag").value,"utf-8")});
然后在servlet中String t
- cygwin很多命令显示command not found的解决办法
dcj3sjt126com
cygwin
cygwin很多命令显示command not found的解决办法
修改cygwin.BAT文件如下
@echo off
D:
set CYGWIN=tty notitle glob
set PATH=%PATH%;d:\cygwin\bin;d:\cygwin\sbin;d:\cygwin\usr\bin;d:\cygwin\usr\sbin;d:\cygwin\us
- [介绍]从 Yii 1.1 升级
dcj3sjt126com
PHPyii2
2.0 版框架是完全重写的,在 1.1 和 2.0 两个版本之间存在相当多差异。因此从 1.1 版升级并不像小版本间的跨越那么简单,通过本指南你将会了解两个版本间主要的不同之处。
如果你之前没有用过 Yii 1.1,可以跳过本章,直接从"入门篇"开始读起。
请注意,Yii 2.0 引入了很多本章并没有涉及到的新功能。强烈建议你通读整部权威指南来了解所有新特性。这样有可能会发
- Linux SSH免登录配置总结
eksliang
ssh-keygenLinux SSH免登录认证Linux SSH互信
转载请出自出处:http://eksliang.iteye.com/blog/2187265 一、原理
我们使用ssh-keygen在ServerA上生成私钥跟公钥,将生成的公钥拷贝到远程机器ServerB上后,就可以使用ssh命令无需密码登录到另外一台机器ServerB上。
生成公钥与私钥有两种加密方式,第一种是
- 手势滑动销毁Activity
gundumw100
android
老是效仿ios,做android的真悲催!
有需求:需要手势滑动销毁一个Activity
怎么办尼?自己写?
不用~,网上先问一下百度。
结果:
http://blog.csdn.net/xiaanming/article/details/20934541
首先将你需要的Activity继承SwipeBackActivity,它会在你的布局根目录新增一层SwipeBackLay
- JavaScript变换表格边框颜色
ini
JavaScripthtmlWebhtml5css
效果查看:http://hovertree.com/texiao/js/2.htm代码如下,保存到HTML文件也可以查看效果:
<html>
<head>
<meta charset="utf-8">
<title>表格边框变换颜色代码-何问起</title>
</head>
<body&
- Kafka Rest : Confluent
kane_xie
kafkaRESTconfluent
最近拿到一个kafka rest的需求,但kafka暂时还没有提供rest api(应该是有在开发中,毕竟rest这么火),上网搜了一下,找到一个Confluent Platform,本文简单介绍一下安装。
这里插一句,给大家推荐一个九尾搜索,原名叫谷粉SOSO,不想fanqiang谷歌的可以用这个。以前在外企用谷歌用习惯了,出来之后用度娘搜技术问题,那匹配度简直感人。
环境声明:Ubu
- Calender不是单例
men4661273
单例Calender
在我们使用Calender的时候,使用过Calendar.getInstance()来获取一个日期类的对象,这种方式跟单例的获取方式一样,那么它到底是不是单例呢,如果是单例的话,一个对象修改内容之后,另外一个线程中的数据不久乱套了吗?从试验以及源码中可以得出,Calendar不是单例。
测试:
Calendar c1 =
- 线程内存和主内存之间联系
qifeifei
java thread
1, java多线程共享主内存中变量的时候,一共会经过几个阶段,
lock:将主内存中的变量锁定,为一个线程所独占。
unclock:将lock加的锁定解除,此时其它的线程可以有机会访问此变量。
read:将主内存中的变量值读到工作内存当中。
load:将read读取的值保存到工作内存中的变量副本中。
- schedule和scheduleAtFixedRate
tangqi609567707
javatimerschedule
原文地址:http://blog.csdn.net/weidan1121/article/details/527307
import java.util.Timer;import java.util.TimerTask;import java.util.Date;
/** * @author vincent */public class TimerTest {
 
- erlang 部署
wudixiaotie
erlang
1.如果在启动节点的时候报这个错 :
{"init terminating in do_boot",{'cannot load',elf_format,get_files}}
则需要在reltool.config中加入
{app, hipe, [{incl_cond, exclude}]},
2.当generate时,遇到:
ERROR