- 【笔记-软考】大数据架构-Lambda与Kappa架构对比
我叫白小猿
软考软考架构大数据KappaLambda
Author:赵志乾Date:2024-07-28Declaration:AllRightReserved!!!1.简介大数据系统架构的设计思想很大程度受技术条件和思维模式的限制;Lambda架构在提出初期面向小范围业务,直接将成熟离线处理技术(Hadoop)和实时处理技术(Storm)相结合,用View模型将二者处理后得到的输出结果结合起来,在服务层进行统一后,再开放给上层服务,是相当可行且高效
- HDFS(Hadoop分布式文件系统)总结
Cachel wood
大数据开发hadoophdfs大数据散列表算法哈希算法spark
文章目录一、HDFS概述1.定义与定位2.核心特点二、HDFS架构核心组件1.NameNode(名称节点)2.DataNode(数据节点)3.Client(客户端)4.SecondaryNameNode(辅助名称节点)三、数据存储机制1.数据块(Block)设计2.复制策略(默认复制因子=3)3.数据完整性校验四、文件读写流程1.写入流程2.读取流程五、高可用性(HA)机制1.单点故障解决方案2.
- Spark教程1:Spark基础介绍
Cachel wood
大数据开发spark大数据分布式计算机网络数据库数据仓库
文章目录一、Spark是什么?二、Spark的核心优势三、Spark的核心概念四、Spark的主要组件五、Spark的部署模式六、Spark与Hadoop的关系七、Spark应用开发流程八、Spark的应用场景九、Spark版本更新与社区一、Spark是什么?ApacheSpark是一个开源的分布式大数据处理引擎,最初由加州大学伯克利分校AMPLab开发,2013年捐赠给Apache软件基金会,如
- Hadoop的部分用法
覃炳文20230322027
hadoophive大数据分布式
前言Hadoop是一个由Apache基金会开发的开源框架,它允许跨多个机器使用分布式处理大数据集。Hadoop的核心是HDFS(HadoopDistributedFileSystem)和MapReduce编程模型。1.Hadoop环境搭建在开始使用Hadoop之前,你需要搭建Hadoop环境。这通常包括安装Java、配置Hadoop环境变量、配置Hadoop的配置文件等步骤。1.1环境准备在开始安
- Netty4.1 - TCP粘包拆包解决方案及案例代码
wwyh520
IO编程netty
Netty是目前业界最流行的NIO框架之一,它的健壮性、高性能、可定制和可扩展性在同类框架中都是首屈一指。它已经得到了成百上千的商业项目的验证,例如Hadoop的RPC框架Avro就使用了Netty作为底层通信框架,其他的业界主流RPC框架,例如:Dubbo、Google开源的gRPC、新浪微博开源的Motan、Twitter开源的finagle也使用Netty来构建高性能的异步通信能力。另外,阿
- Storm核心概念与实战详解
AI天才研究院
Python实战自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术1.简介2010年Hadoop项目开源后,Storm项目也随之走向人气爆棚。在如此火热的当下,给我们带来的好处不仅仅是增强对Hadoop平台的掌控能力,更重要的是让我们感受到了快速发展、海量数据处理能力、低延迟的优势。在这一系列文章中,我将深入浅出地介绍Storm项目,并从实际案例出发,带领大家全面理解Storm中的关键概念及其运作方式,让您轻松掌握Storm的高效率、
- 基于Hadoop大数据分析应用场景与实战
跨过山河大海
一、Hadoop的应用业务分析大数据是不能用传统的计算技术处理的大型数据集的集合。它不是一个单一的技术或工具,而是涉及的业务和技术的许多领域。目前主流的三大分布式计算系统分别为:Hadoop、Spark和Strom:Hadoop当前大数据管理标准之一,运用在当前很多商业应用系统。可以轻松地集成结构化、半结构化甚至非结构化数据集。Spark采用了内存计算。从多迭代批处理出发,允许将数据载入内存作反复
- Hadoop 发展过程是怎样的?
AI天才研究院
Python实战自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术1.简介2003年,美国加州大学洛杉矶分校教授李彦宏博士发明了一种分布式文件系统——GFS(GoogleFileSystem)。由于该文件系统设计得足够简单,可以适应大规模数据集存储需求,在此基础上演化出多种应用,包括MapReduce、BigTable、PageRank等,并成为当时互联网公司的标配技术之一。2004年,Google发布了第一版Hadoop项目,定位是
- 通过CDH安装Spark的详细指南
暴躁哥
大数据技术spark大数据分布式
通过CDH安装Spark的详细指南简介ClouderaDistributionofHadoop(CDH)是一个企业级的大数据平台,它集成了多个开源组件,包括Hadoop、Spark、Hive等。本文将详细介绍如何通过CDH安装和配置Spark。前提条件在开始安装之前,请确保满足以下条件:已安装CDH集群具有管理员权限所有节点之间网络互通系统时间同步足够的磁盘空间(建议至少预留20GB)安装步骤1.
- Hadoop 版本进化论:从 1.0 到 2.0,架构革命全解析
拾光师
大数据后端
Hadoop版本hadoop1.x版本由三部分组成Common(辅助工具)HDFS(数据存储)MapReduce(计算和资源调度)存在的问题JobTracker同时具备了资源管理和作业控制两个功能,成为了系统的最大瓶颈采用了master/slave结构,master存在单点问题,一旦master出现故障,会导致整个集群不可用采用了基于槽位的资源分配模型,将槽位分为了Mapslot和Reducesl
- Hadoop RPC 分层设计的哲学:高内聚、低耦合的最佳实践
拾光师
大数据后端
HadoopRPCHadoopRPC主要分为四个部分,分别是序列化层、函数调用层、网络传输层和服务器端处理框架,实现机制为:序列化层:主要作用是将结构化对象转为字节流以便于通过网络进行传输或写入持久存储。函数调用层:主要作用是定位要调用的函数并执行该参数,采用了java反射机制和动态代理实现了函数调用网络传输层:描述了client和server之间消息传输的方式,基于TCP/IP的socket机制
- 基于pyspark的北京历史天气数据分析及可视化_离线
大数据CLUB
spark数据分析可视化数据分析数据挖掘hadoop大数据spark
基于pyspark的北京历史天气数据分析及可视化项目概况[]点这里,查看所有项目[]数据类型北京历史天气数据开发环境centos7软件版本python3.8.18、hadoop3.2.0、spark3.1.2、mysql5.7.38、scala2.12.18、jdk8开发语言python开发流程数据上传(hdfs)->数据分析(spark)->数据存储(mysql)->后端(flask)->前端(
- Hadoop RPC 分层设计的哲学:高内聚、低耦合的最佳实践
后端
HadoopRPCHadoopRPC主要分为四个部分,分别是序列化层、函数调用层、网络传输层和服务器端处理框架,实现机制为:序列化层:主要作用是将结构化对象转为字节流以便于通过网络进行传输或写入持久存储。函数调用层:主要作用是定位要调用的函数并执行该参数,采用了java反射机制和动态代理实现了函数调用网络传输层:描述了client和server之间消息传输的方式,基于TCP/IP的socket机制
- 基于pyspark的北京历史天气数据分析及可视化_实时
大数据CLUB
spark数据分析可视化数据分析数据挖掘sparkhadoop大数据
基于pyspark的北京历史天气数据分析及可视化项目概况[]点这里,查看所有项目[]数据类型北京历史天气数据开发环境centos7软件版本python3.8.18、hadoop3.2.0、spark3.1.2、mysql5.7.38、scala2.12.18、jdk8、kafka2.8.2开发语言python开发流程数据上传(hdfs)->数据分析(spark)->数据写kafka(python)
- 《从零开始:Hadoop 3.3.0 全分布式环境搭建与运行详解(含自动化配置)》
李哈哈敲代码
学习经验分布式hadoop自动化大数据linux
Hadoop3.3.0全分布并环境搭建与运行部署详解一、准备工作1.1环境要求三台Linux主机,如node1、node2、node3配置推荐:内存大于4GB,CPU大于2核,磁盘空间大于40GB1.2软件列表JDK1.8(!!需要提前上传到software目录下,解压到server目录下)Hadoop3.3.01.3目录规划(注意在根目录下创建export)/export/server#安装目录
- Hadoop等大数据处理框架的Java API
扬子鳄008
Javahadoopjava大数据
Hadoop是一个非常流行的大数据处理框架,主要用于存储和处理大规模数据集。Hadoop主要有两个核心组件:HDFS(HadoopDistributedFileSystem)和MapReduce。此外,还有许多其他组件,如YARN(YetAnotherResourceNegotiator)、HBase、Hive等。下面详细介绍Hadoop及其相关组件的JavaAPI及其使用方法。HadoopHad
- python--将mysql建表语句转换成hive建表语句
呆呆不呆~
sparkpythonmysqlhivespark
1.代码importjsonimportsysimportpymysqldefqueryDataBase(tablename):#连接数据库并查询列信息conn=pymysql.connect(user='root',password='123456',host='hadoop11')cursor=conn.cursor()cursor.execute("SELECTcolumn_name,dat
- 手把手教你玩转 Sqoop:从数据库到大数据的「数据搬运工」
AAA建材批发王师傅
数据库sqoop大数据hivehdfs
一、Sqoop是什么?——数据界的「超级搬运工」兄弟们,今天咱们聊个大数据圈的「搬运小能手」——Sqoop!可能有人会问:这玩意儿跟Flume啥区别?简单来说:Flume是专门搬日志数据的「快递员」而Sqoop是搬数据库数据的「搬家公司」它的名字咋来的?SQL+Hadoop,直接告诉你核心技能:在关系型数据库(比如MySQL)和Hadoop家族(HDFS、Hive、HBase)之间疯狂倒腾数据!核
- Python 工程师迈向大数据时代: Hadoop 与 Spark 框架深度解析与实战指南
清水白石008
pythonPython题库大数据pythonhadoop
Python工程师迈向大数据时代:Hadoop与Spark框架深度解析与实战指南引言亲爱的Python工程师们,欢迎来到大数据时代!在这个数据驱动的时代,海量数据如同奔腾不息的河流,蕴藏着前所未有的价值。然而,传统的数据处理工具在面对TB甚至PB级别的数据时,往往显得力不从心。如何高效地处理、分析和挖掘这些海量数据,成为了现代软件工程师,特别是Python工程师们必须掌握的关键技能。幸运的是,大数
- 从 0 到 Offer!大数据核心面试题全解析,答案精准拿捏面试官(hadoop篇)
浅谈星痕
大数据
1.什么是Hadoop?Hadoop是一个开源的分布式系统基础架构,用于存储和处理大规模数据集。它主要包含HDFS(HadoopDistributedFileSystem)分布式文件系统、MapReduce分布式计算框架以及YARN(YetAnotherResourceNegotiator)资源管理器。HDFS负责数据的分布式存储,将大文件分割成多个数据块存储在不同节点上;MapReduce用于分
- [5-03-01].第14节:集群搭建 - 在Linux系统中搭建
1.01^1000
#企业级框架springcloud
SpringCloud学习大纲三、集群环境搭建:3.1.集群规划1.nacos规划:hadoop103hadoop104hadoop105192.168.148.3192.168.148.4192.168.148.5nacosnacosnacos2.MYSQL规划:192.168.148.333065.7.27
- 大数据学习(141)-分布式数据库
viperrrrrrr
大数据学习分布式clickhousehdfshbase
在分布式数据库中主要有hdfs、hbase、clickhouse三种。HDFS(HadoopDistributedFileSystem)、HBase和ClickHouse都是处理大数据的分布式系统,但它们的设计目标、架构和适用场景有所不同。一、HDFS(HadoopDistributedFileSystem)HDFS是Hadoop生态系统的一部分,是一个高度容错的系统,适合存储大量数据。它被设计为
- HDFS Federation(联邦) 架构YARN的Capacity Scheduler调度策略 ResourceManager的共享存储具体实现方式
2401_8554978
hdfs架构java
HDFSFederation(联邦)架构什么是HDFSFederation?随着数据量的增长,单一的NameNode成为了HDFS的瓶颈,因为它需要管理整个文件系统的命名空间和所有文件块的位置信息。为了克服这个限制,Hadoop引入了Federation机制,允许一个集群中有多个NameNode/NameSpace,每个NameNode管理一部分文件系统,从而分散负载。优点:提高扩展性:通过增加N
- scp与rsync
JeremyHeria
#hadoophadoop大数据
编写集群分发脚本xsyncscp(securecopy)安全拷贝(1)scp定义:scp可以实现服务器与服务器之间的数据拷贝。(fromserver1toserver2)(2)基本语法scp-rpdir/pdir/pdir/fnameuser@hadoopuser@hadoopuser@
- 复习打卡大数据篇——Hadoop HDFS 03
筒栗子
大数据hadoophdfs
目录1.HDFS元数据存储2.HDFSHA高可用1.HDFS元数据存储HDFS中的元数据按类型可以分为:文件系统的元数据:包括文件名、目录名、修改信息、block的信息、副本信息等。datanodes的状态信息:比如节点状态、使用率等。HDFS中的元数据按存储位置可以分为内存中元数据和磁盘上的元数据磁盘上的元件数据包括fsimage镜像文件和editslog编辑日志,因为在磁盘上可以保证持久化存储
- TiDB 替换 HBase 全场景实践指南 ——从架构革新到业务赋能
TiDB 社区干货传送门
tidbhbase架构数据库大数据
作者:数据源的TiDB学习之路原文来源:https://tidb.net/blog/c687d474第一章:HBase的历史使命与技术瓶颈1.1HBase的核心价值与经典场景作为Hadoop生态的核心组件,HBase凭借LSM-Tree存储引擎和Region分片机制,在2010年代成为海量数据存储的标杆。其典型场景包括:日志流处理:支持Kafka每日TB级数据持久化,写入吞吐达百万级QPS(如某头
- 什么是MapReduce
ThisIsClark
大数据mapreduce大数据
MapReduce:大数据处理的经典范式什么是MapReduce?MapReduce是一种编程模型和软件框架,用于大规模数据集(通常大于1TB)的并行处理。它由Google在2004年提出,后来成为ApacheHadoop项目的核心计算引擎。MapReduce通过将计算任务分解为两个主要阶段——Map(映射)和Reduce(归约)——来实现分布式计算。核心思想MapReduce的核心设计原则可以概
- Hive的优化
小王同学mf
hivehadoop数据仓库
一、开启本地模式大多数的HadoopJob是需要Hadoop提供的完整的可扩展性来处理大数据集的。不过,有时Hive的输入数据量是非常小的。在这种情况下,为查询触发执行任务消耗的时间可能会比实际job的执行时间要多的多。对于大多数这种情况,Hive可以通过本地模式在单台机器上处理所有的任务。对于小数据集,执行时间可以明显被缩短。用户可以通过设置hive.exec.mode.local.auto的值
- 数据库选型之路YMatrix与Clickhouse对比
星*语
数据库数据仓库时序数据库
背锅我们是被迫的数据库问题‘触发’越来越频繁了,开发、业务人员也一直抱怨数据库不行,作为运维人员,天天各种处理问题,还被其他部门喷,有问题矛头全部指向数据库。刚上任的部门领导整天也是压力山大,内部会议分析了当前的情况,最终解决方案是架构变更。当前的生产系统运行在Mysql上,从开始的保留半年的数据,到现在缩减到保留不足三个月的数据,全量数据实时同步到Hadoop,随着业务的发展,Mysql和Had
- 【Ambari3.0.0 部署】Step3—安装JDK17与JDK1.8-适用于el8
TTBIGDATA
ambaribigtophdphidataplusedp大数据el8
如果有其他系统部署需求可以参考原文https://doc.janettr.com/install/manual/Step3—安装JDK17与JDK1.8Ambari3.0及部分Bigtop/Hadoop新组件强制要求JDK17,而HBase/Hive/Spark生态仍有组件长期依赖JDK1.8。因此推荐双版本共存方案,让集群灵活兼容各种大数据组件,满足未来升级和遗留需求。JDK17与JDK1.8可
- rust的指针作为函数返回值是直接传递,还是先销毁后创建?
wudixiaotie
返回值
这是我自己想到的问题,结果去知呼提问,还没等别人回答, 我自己就想到方法实验了。。
fn main() {
let mut a = 34;
println!("a's addr:{:p}", &a);
let p = &mut a;
println!("p's addr:{:p}", &a
- java编程思想 -- 数据的初始化
百合不是茶
java数据的初始化
1.使用构造器确保数据初始化
/*
*在ReckInitDemo类中创建Reck的对象
*/
public class ReckInitDemo {
public static void main(String[] args) {
//创建Reck对象
new Reck();
}
}
- [航天与宇宙]为什么发射和回收航天器有档期
comsci
地球的大气层中有一个时空屏蔽层,这个层次会不定时的出现,如果该时空屏蔽层出现,那么将导致外层空间进入的任何物体被摧毁,而从地面发射到太空的飞船也将被摧毁...
所以,航天发射和飞船回收都需要等待这个时空屏蔽层消失之后,再进行
&
- linux下批量替换文件内容
商人shang
linux替换
1、网络上现成的资料
格式: sed -i "s/查找字段/替换字段/g" `grep 查找字段 -rl 路径`
linux sed 批量替换多个文件中的字符串
sed -i "s/oldstring/newstring/g" `grep oldstring -rl yourdir`
例如:替换/home下所有文件中的www.admi
- 网页在线天气预报
oloz
天气预报
网页在线调用天气预报
<%@ page language="java" contentType="text/html; charset=utf-8"
pageEncoding="utf-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transit
- SpringMVC和Struts2比较
杨白白
springMVC
1. 入口
spring mvc的入口是servlet,而struts2是filter(这里要指出,filter和servlet是不同的。以前认为filter是servlet的一种特殊),这样就导致了二者的机制不同,这里就牵涉到servlet和filter的区别了。
参见:http://blog.csdn.net/zs15932616453/article/details/8832343
2
- refuse copy, lazy girl!
小桔子
copy
妹妹坐船头啊啊啊啊!都打算一点点琢磨呢。文字编辑也写了基本功能了。。今天查资料,结果查到了人家写得完完整整的。我清楚的认识到:
1.那是我自己觉得写不出的高度
2.如果直接拿来用,很快就能解决问题
3.然后就是抄咩~~
4.肿么可以这样子,都不想写了今儿个,留着作参考吧!拒绝大抄特抄,慢慢一点点写!
- apache与php整合
aichenglong
php apache web
一 apache web服务器
1 apeche web服务器的安装
1)下载Apache web服务器
2)配置域名(如果需要使用要在DNS上注册)
3)测试安装访问http://localhost/验证是否安装成功
2 apache管理
1)service.msc进行图形化管理
2)命令管理,配
- Maven常用内置变量
AILIKES
maven
Built-in properties
${basedir} represents the directory containing pom.xml
${version} equivalent to ${project.version} (deprecated: ${pom.version})
Pom/Project properties
Al
- java的类和对象
百合不是茶
JAVA面向对象 类 对象
java中的类:
java是面向对象的语言,解决问题的核心就是将问题看成是一个类,使用类来解决
java使用 class 类名 来创建类 ,在Java中类名要求和构造方法,Java的文件名是一样的
创建一个A类:
class A{
}
java中的类:将某两个事物有联系的属性包装在一个类中,再通
- JS控制页面输入框为只读
bijian1013
JavaScript
在WEB应用开发当中,增、删除、改、查功能必不可少,为了减少以后维护的工作量,我们一般都只做一份页面,通过传入的参数控制其是新增、修改或者查看。而修改时需将待修改的信息从后台取到并显示出来,实际上就是查看的过程,唯一的区别是修改时,页面上所有的信息能修改,而查看页面上的信息不能修改。因此完全可以将其合并,但通过前端JS将查看页面的所有信息控制为只读,在信息量非常大时,就比较麻烦。
- AngularJS与服务器交互
bijian1013
JavaScriptAngularJS$http
对于AJAX应用(使用XMLHttpRequests)来说,向服务器发起请求的传统方式是:获取一个XMLHttpRequest对象的引用、发起请求、读取响应、检查状态码,最后处理服务端的响应。整个过程示例如下:
var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange
- [Maven学习笔记八]Maven常用插件应用
bit1129
maven
常用插件及其用法位于:http://maven.apache.org/plugins/
1. Jetty server plugin
2. Dependency copy plugin
3. Surefire Test plugin
4. Uber jar plugin
1. Jetty Pl
- 【Hive六】Hive用户自定义函数(UDF)
bit1129
自定义函数
1. 什么是Hive UDF
Hive是基于Hadoop中的MapReduce,提供HQL查询的数据仓库。Hive是一个很开放的系统,很多内容都支持用户定制,包括:
文件格式:Text File,Sequence File
内存中的数据格式: Java Integer/String, Hadoop IntWritable/Text
用户提供的 map/reduce 脚本:不管什么
- 杀掉nginx进程后丢失nginx.pid,如何重新启动nginx
ronin47
nginx 重启 pid丢失
nginx进程被意外关闭,使用nginx -s reload重启时报如下错误:nginx: [error] open() “/var/run/nginx.pid” failed (2: No such file or directory)这是因为nginx进程被杀死后pid丢失了,下一次再开启nginx -s reload时无法启动解决办法:nginx -s reload 只是用来告诉运行中的ng
- UI设计中我们为什么需要设计动效
brotherlamp
UIui教程ui视频ui资料ui自学
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用你的产品。
- Spring中JdbcDaoSupport的DataSource注入问题
bylijinnan
javaspring
参考以下两篇文章:
http://www.mkyong.com/spring/spring-jdbctemplate-jdbcdaosupport-examples/
http://stackoverflow.com/questions/4762229/spring-ldap-invoking-setter-methods-in-beans-configuration
Sprin
- 数据库连接池的工作原理
chicony
数据库连接池
随着信息技术的高速发展与广泛应用,数据库技术在信息技术领域中的位置越来越重要,尤其是网络应用和电子商务的迅速发展,都需要数据库技术支持动 态Web站点的运行,而传统的开发模式是:首先在主程序(如Servlet、Beans)中建立数据库连接;然后进行SQL操作,对数据库中的对象进行查 询、修改和删除等操作;最后断开数据库连接。使用这种开发模式,对
- java 关键字
CrazyMizzz
java
关键字是事先定义的,有特别意义的标识符,有时又叫保留字。对于保留字,用户只能按照系统规定的方式使用,不能自行定义。
Java中的关键字按功能主要可以分为以下几类:
(1)访问修饰符
public,private,protected
p
- Hive中的排序语法
daizj
排序hiveorder byDISTRIBUTE BYsort by
Hive中的排序语法 2014.06.22 ORDER BY
hive中的ORDER BY语句和关系数据库中的sql语法相似。他会对查询结果做全局排序,这意味着所有的数据会传送到一个Reduce任务上,这样会导致在大数量的情况下,花费大量时间。
与数据库中 ORDER BY 的区别在于在hive.mapred.mode = strict模式下,必须指定 limit 否则执行会报错。
- 单态设计模式
dcj3sjt126com
设计模式
单例模式(Singleton)用于为一个类生成一个唯一的对象。最常用的地方是数据库连接。 使用单例模式生成一个对象后,该对象可以被其它众多对象所使用。
<?phpclass Example{ // 保存类实例在此属性中 private static&
- svn locked
dcj3sjt126com
Lock
post-commit hook failed (exit code 1) with output:
svn: E155004: Working copy 'D:\xx\xxx' locked
svn: E200031: sqlite: attempt to write a readonly database
svn: E200031: sqlite: attempt to write a
- ARM寄存器学习
e200702084
数据结构C++cC#F#
无论是学习哪一种处理器,首先需要明确的就是这种处理器的寄存器以及工作模式。
ARM有37个寄存器,其中31个通用寄存器,6个状态寄存器。
1、不分组寄存器(R0-R7)
不分组也就是说说,在所有的处理器模式下指的都时同一物理寄存器。在异常中断造成处理器模式切换时,由于不同的处理器模式使用一个名字相同的物理寄存器,就是
- 常用编码资料
gengzg
编码
List<UserInfo> list=GetUserS.GetUserList(11);
String json=JSON.toJSONString(list);
HashMap<Object,Object> hs=new HashMap<Object, Object>();
for(int i=0;i<10;i++)
{
- 进程 vs. 线程
hongtoushizi
线程linux进程
我们介绍了多进程和多线程,这是实现多任务最常用的两种方式。现在,我们来讨论一下这两种方式的优缺点。
首先,要实现多任务,通常我们会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。
如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。
如果用多线程实现
- Linux定时Job:crontab -e 与 /etc/crontab 的区别
Josh_Persistence
linuxcrontab
一、linux中的crotab中的指定的时间只有5个部分:* * * * *
分别表示:分钟,小时,日,月,星期,具体说来:
第一段 代表分钟 0—59
第二段 代表小时 0—23
第三段 代表日期 1—31
第四段 代表月份 1—12
第五段 代表星期几,0代表星期日 0—6
如:
*/1 * * * * 每分钟执行一次。
*
- KMP算法详解
hm4123660
数据结构C++算法字符串KMP
字符串模式匹配我们相信大家都有遇过,然而我们也习惯用简单匹配法(即Brute-Force算法),其基本思路就是一个个逐一对比下去,这也是我们大家熟知的方法,然而这种算法的效率并不高,但利于理解。
假设主串s="ababcabcacbab",模式串为t="
- 枚举类型的单例模式
zhb8015
单例模式
E.编写一个包含单个元素的枚举类型[极推荐]。代码如下:
public enum MaYun {himself; //定义一个枚举的元素,就代表MaYun的一个实例private String anotherField;MaYun() {//MaYun诞生要做的事情//这个方法也可以去掉。将构造时候需要做的事情放在instance赋值的时候:/** himself = MaYun() {*
- Kafka+Storm+HDFS
ssydxa219
storm
cd /myhome/usr/stormbin/storm nimbus &bin/storm supervisor &bin/storm ui &Kafka+Storm+HDFS整合实践kafka_2.9.2-0.8.1.1.tgzapache-storm-0.9.2-incubating.tar.gzKafka安装配置我们使用3台机器搭建Kafk
- Java获取本地服务器的IP
中华好儿孙
javaWeb获取服务器ip地址
System.out.println("getRequestURL:"+request.getRequestURL());
System.out.println("getLocalAddr:"+request.getLocalAddr());
System.out.println("getLocalPort:&quo