广度优先搜索(BFS、广搜)

本文转自: http://data.biancheng.net/view/45.html

广度优先搜索

以下图为例子:

广度优先搜索(BFS、广搜)_第1张图片

广度优先搜索类似于树的层次遍历。从图中的某一顶点出发,遍历每一个顶点时,依次遍历其所有的邻接点,然后再从这些邻接点出发,同样依次访问它们的邻接点。按照此过程,直到图中所有被访问过的顶点的邻接点都被访问到。

最后还需要做的操作就是查看图中是否存在尚未被访问的顶点,若有,则以该顶点为起始点,重复上述遍历的过程。

还拿图 1 中的无向图为例,假设 V1 作为起始点,遍历其所有的邻接点 V2 和 V3 ,以 V2 为起始点,访问邻接点 V4 和 V5 ,以 V3 为起始点,访问邻接点 V6 、 V7 ,以 V4 为起始点访问 V8 ,以 V5 为起始点,由于 V5 所有的起始点已经全部被访问,所有直接略过, V6 和 V7 也是如此。
以 V1 为起始点的遍历过程结束后,判断图中是否还有未被访问的点,由于图 1 中没有了,所以整个图遍历结束。遍历顶点的顺序为:

V1 -> V2 -> v3 -> V4 -> V5 -> V6 -> V7 -> V8

广度优先搜索的实现需要借助队列这一特殊数据结构,实现代码为:

#include 
#include 
#define MAX_VERtEX_NUM 20                   //顶点的最大个数
#define VRType int                          //表示顶点之间的关系的变量类型
#define InfoType char                       //存储弧或者边额外信息的指针变量类型
#define VertexType int                      //图中顶点的数据类型
typedef enum{false,true}bool;               //定义bool型常量
bool visited[MAX_VERtEX_NUM];               //设置全局数组,记录标记顶点是否被访问过
typedef struct Queue{
    VertexType data;
    struct Queue * next;
}Queue;
typedef struct {
    VRType adj;                             //对于无权图,用 1 或 0 表示是否相邻;对于带权图,直接为权值。
    InfoType * info;                        //弧或边额外含有的信息指针
}ArcCell,AdjMatrix[MAX_VERtEX_NUM][MAX_VERtEX_NUM];

typedef struct {
    VertexType vexs[MAX_VERtEX_NUM];        //存储图中顶点数据
    AdjMatrix arcs;                         //二维数组,记录顶点之间的关系
    int vexnum,arcnum;                      //记录图的顶点数和弧(边)数
}MGraph;
//根据顶点本身数据,判断出顶点在二维数组中的位置
int LocateVex(MGraph * G,VertexType v){
    int i=0;
    //遍历一维数组,找到变量v
    for (; ivexnum; i++) {
        if (G->vexs[i]==v) {
            break;
        }
    }
    //如果找不到,输出提示语句,返回-1
    if (i>G->vexnum) {
        printf("no such vertex.\n");
        return -1;
    }
    return i;
}
//构造无向图
void CreateDN(MGraph *G){
    scanf("%d,%d",&(G->vexnum),&(G->arcnum));
    for (int i=0; ivexnum; i++) {
        scanf("%d",&(G->vexs[i]));
    }
    for (int i=0; ivexnum; i++) {
        for (int j=0; jvexnum; j++) {
            G->arcs[i][j].adj=0;
            G->arcs[i][j].info=NULL;
        }
    }
    for (int i=0; iarcnum; i++) {
        int v1,v2;
        scanf("%d,%d",&v1,&v2);
        int n=LocateVex(G, v1);
        int m=LocateVex(G, v2);
        if (m==-1 ||n==-1) {
            printf("no this vertex\n");
            return;
        }
        G->arcs[n][m].adj=1;
        G->arcs[m][n].adj=1;//无向图的二阶矩阵沿主对角线对称
    }
}

int FirstAdjVex(MGraph G,int v)
{
    //查找与数组下标为v的顶点之间有边的顶点,返回它在数组中的下标
    for(int i = 0; inext=NULL;
}
//顶点元素v进队列
void EnQueue(Queue **Q,VertexType v){
    Queue * element=(Queue*)malloc(sizeof(Queue));
    element->data=v;
    Queue * temp=(*Q);
    while (temp->next!=NULL) {
        temp=temp->next;
    }
    temp->next=element;
}
//队头元素出队列
void DeQueue(Queue **Q,int *u){
    (*u)=(*Q)->next->data;
    (*Q)->next=(*Q)->next->next;
}
//判断队列是否为空
bool QueueEmpty(Queue *Q){
    if (Q->next==NULL) {
        return true;
    }
    return false;
}
//广度优先搜索
void BFSTraverse(MGraph G){//
    int v;
    //将用做标记的visit数组初始化为false
    for( v = 0; v < G.vexnum; ++v){
        visited[v] = false;
    }
    //对于每个标记为false的顶点调用深度优先搜索函数
    Queue * Q;
    InitQueue(&Q);
    for( v = 0; v < G.vexnum; v++){
        if(!visited[v]){
            visited[v]=true;
            visitVex(G, v);
            EnQueue(&Q, G.vexs[v]);
            while (!QueueEmpty(Q)) {
                int u;
                DeQueue(&Q, &u);
                u=LocateVex(&G, u);
                for (int w=FirstAdjVex(G, u); w>=0; w=NextAdjVex(G, u, w)) {
                    if (!visited[w]) {
                        visited[w]=true;
                        visitVex(G, w);
                        EnQueue(&Q, G.vexs[w]);
                    }
                }
            }
        }
    }
}
int main() {
    MGraph G;//建立一个图的变量
    CreateDN(&G);//初始化图
    BFSTraverse(G);//广度优先搜索图
    return 0;
}

广度优先生成森林

非连通图采用广度优先搜索算法进行遍历时,经过的顶点以及边的集合为该图的广度优先生成森林。
广度优先搜索(BFS、广搜)_第2张图片

拿图 (a)中的非连通图为例,通过广度优先搜索得到的广度优先生成森林用孩子兄弟表示法为:
广度优先搜索(BFS、广搜)_第3张图片

实现代码为:

#include 
#include 
#define MAX_VERtEX_NUM 20                   //顶点的最大个数
#define VRType int                          //表示顶点之间的关系的变量类型
#define InfoType char                       //存储弧或者边额外信息的指针变量类型
#define VertexType int                      //图中顶点的数据类型
typedef enum{false,true}bool;               //定义bool型常量
bool visited[MAX_VERtEX_NUM];               //设置全局数组,记录标记顶点是否被访问过
typedef struct {
    VRType adj;                             //对于无权图,用 1 或 0 表示是否相邻;对于带权图,直接为权值。
    InfoType * info;                        //弧或边额外含有的信息指针
}ArcCell,AdjMatrix[MAX_VERtEX_NUM][MAX_VERtEX_NUM];

typedef struct {
    VertexType vexs[MAX_VERtEX_NUM];        //存储图中顶点数据
    AdjMatrix arcs;                         //二维数组,记录顶点之间的关系
    int vexnum,arcnum;                      //记录图的顶点数和弧(边)数
}MGraph;

typedef struct CSNode{
    VertexType data;
    struct CSNode * lchild;//孩子结点
    struct CSNode * nextsibling;//兄弟结点
}*CSTree,CSNode;

typedef struct Queue{
    CSTree data;//队列中存放的为树结点
    struct Queue * next;
}Queue;

//根据顶点本身数据,判断出顶点在二维数组中的位置
int LocateVex(MGraph * G,VertexType v){
    int i=0;
    //遍历一维数组,找到变量v
    for (; ivexnum; i++) {
        if (G->vexs[i]==v) {
            break;
        }
    }
    //如果找不到,输出提示语句,返回-1
    if (i>G->vexnum) {
        printf("no such vertex.\n");
        return -1;
    }
    return i;
}
//构造无向图
void CreateDN(MGraph *G){
    scanf("%d,%d",&(G->vexnum),&(G->arcnum));
    for (int i=0; ivexnum; i++) {
        scanf("%d",&(G->vexs[i]));
    }
    for (int i=0; ivexnum; i++) {
        for (int j=0; jvexnum; j++) {
            G->arcs[i][j].adj=0;
            G->arcs[i][j].info=NULL;
        }
    }
    for (int i=0; iarcnum; i++) {
        int v1,v2;
        scanf("%d,%d",&v1,&v2);
        int n=LocateVex(G, v1);
        int m=LocateVex(G, v2);
        if (m==-1 ||n==-1) {
            printf("no this vertex\n");
            return;
        }
        G->arcs[n][m].adj=1;
        G->arcs[m][n].adj=1;//无向图的二阶矩阵沿主对角线对称
    }
}

int FirstAdjVex(MGraph G,int v)
{
    //查找与数组下标为v的顶点之间有边的顶点,返回它在数组中的下标
    for(int i = 0; inext=NULL;
}
//结点v进队列
void EnQueue(Queue **Q,CSTree T){
    Queue * element=(Queue*)malloc(sizeof(Queue));
    element->data=T;
    element->next=NULL;
   
    Queue * temp=(*Q);
    while (temp->next!=NULL) {
        temp=temp->next;
    }
    temp->next=element;
}
//队头元素出队列
void DeQueue(Queue **Q,CSTree *u){
    (*u)=(*Q)->next->data;
    (*Q)->next=(*Q)->next->next;
}
//判断队列是否为空
bool QueueEmpty(Queue *Q){
    if (Q->next==NULL) {
        return true;
    }
    return false;
}

void BFSTree(MGraph G,int v,CSTree*T){
    CSTree q=NULL;
    Queue * Q;
    InitQueue(&Q);
    //根结点入队
    EnQueue(&Q, (*T));
    //当队列为空时,证明遍历完成
    while (!QueueEmpty(Q)) {
        bool first=true;
        //队列首个结点出队
        DeQueue(&Q,&q);
        //判断结点中的数据在数组中的具体位置
        int v=LocateVex(&G,q->data);
        //已经访问过的更改其标志位
        visited[v]=true;
        //遍历以出队结点为起始点的所有邻接点
        for (int w=FirstAdjVex(G,v); w>=0; w=NextAdjVex(G,v, w)) {
            //标志位为false,证明未遍历过
            if (!visited[w]) {
                //新建一个结点 p,存放当前遍历的顶点
                CSTree p=(CSTree)malloc(sizeof(CSNode));
                p->data=G.vexs[w];
                p->lchild=NULL;
                p->nextsibling=NULL;
                //当前结点入队
                EnQueue(&Q, p);
                //更改标志位
                visited[w]=true;
                //如果是出队顶点的第一个邻接点,设置p结点为其左孩子
                if (first) {
                    q->lchild=p;
                    first=false;
                }
                //否则设置其为兄弟结点
                else{
                    q->nextsibling=p;
                }
                q=p;
            }
        }
    }
}
//广度优先搜索生成森林并转化为二叉树
void BFSForest(MGraph G,CSTree *T){
    (*T)=NULL;
    //每个顶点的标记为初始化为false
    for (int v=0; vdata=G.vexs[v];
            p->lchild=NULL;
            p->nextsibling=NULL;
            //如果树未空,则该顶点作为树的树根
            if (!(*T)) {
                (*T)=p;
            }
            //该顶点作为树根的兄弟结点
            else{
                q->nextsibling=p;
            }
            //每次都要把q指针指向新的结点,为下次添加结点做铺垫
            q=p;
            //以该结点为起始点,构建广度优先生成树
            BFSTree(G,v,&p);
        }
    }
}
//前序遍历二叉树
void PreOrderTraverse(CSTree T){
    if (T) {
        printf("%d ",T->data);
        PreOrderTraverse(T->lchild);
        PreOrderTraverse(T->nextsibling);
    }
    return;
}
int main() {
    MGraph G;//建立一个图的变量
    CreateDN(&G);//初始化图
    CSTree T;
    BFSForest(G, &T);
    PreOrderTraverse(T);
    return 0;
}

你可能感兴趣的:(数据结构)