- 【运筹优化】整数规划优化方法:割平面法详解 + Java调用Cplex代码实战
WSKH0929
人工智能#运筹优化java运筹学数学规划整数规划割平面法有效不等式
文章目录一、割平面法介绍二、有效不等式2.1有效不等式简介2.2强有效不等式三、常用有效不等式3.1Chvatal-GomoryCut3.2GomoryCut3.2.1纯整数规划模型3.2.2混合整数规划模型3.3MixedIntegerRoundingCut3.4CoveringCut四、Java调用Cplex代码实战4.1实战1:基于GomoryCut的割平面法求解IP一、割平面法介绍割平面法
- 旅行商问题(TSP)的 C++ 动态规划解法教学攻略
iceslime
算法数据结构算法设计与分析c++
一、问题描述旅行商问题(TSP)是一个经典的组合优化问题。给定一个无向图,图中的顶点表示城市,边表示两个城市之间的路径,边的权重表示路径的距离。一个售货员需要从驻地出发,经过所有城市后回到驻地,要求总的路程最短。二、输入输出形式输入形式输入的第一行包含两个整数n和m,分别表示顶点个数和边数。接下来的m行中,每行包含三个整数u、v和w,表示顶点u和顶点v之间有一条边,边的权重为w。输出形式输出一个整
- [智能算法]蚁群算法原理与TSP问题示例
七刀
智能算法算法
目录编辑一、生物行为启发的智能优化算法1.1自然界的群体智能现象1.2人工蚁群算法核心思想二、算法在组合优化中的应用演进2.1经典TSP问题建模2.2算法流程优化三、TSP问题实战:Python实现与可视化3.1算法核心类设计3.2参数敏感性实验3.3可视化分析四、关键参数调优指南4.1基准参数范围4.2动态调参策略4.3性能优化技巧五、扩展应用与前沿方向5.1多目标优化问题5.2深度强化学习融合
- 旅行商问题(TSP)状压DP Python代码
马正气
算法#动态规划python动态规划
来自Wikipedia的定义Thetravellingsalesmanproblem(alsocalledthetravellingsalespersonproblemorTSP)asksthefollowingquestion:"Givenalistofcitiesandthedistancesbetweeneachpairofcities,whatistheshortestpossiblero
- 状压dp:带你从入门到入土(从tsp到dominoTiling问题)
Lesolitaires
动态规划算法状压dpc++
应群u要求水一篇状压dp的博客动态规划(DP)是算法竞赛和编程面试中的常客,而状态压缩动态规划(状压DP)则是其中一种高级技巧,本文将带你从零开始学习状压DP,理解其核心思想,并通过C++代码示例掌握实现方法一、什么是状压DP?状压DP是一种利用位运算来高效表示和转移状态的动态规划方法。它特别适用于状态可以用二进制位表示的问题,通常处理的是"选或不选"、"存在或不存在"这类的二元状态为什么需要状态
- 模拟退火算法(Simulated Annealing,简称SA)
深度学习客
算法优化模拟退火算法算法机器学习人工智能深度学习数据挖掘
目录模拟退火算法的详解1.基本原理2.算法步骤2.1.初始化2.2.迭代搜索2.3.温度更新2.4.终止条件3.参数调整4.应用案例5.优势与局限性总结模拟退火算法的Python示例与解释1.导入所需的库2.定义问题参数和函数3.模拟退火算法实现4.使用模拟退火算法解决TSP问题5.结果可视化总结模拟退火算法的详解模拟退火算法(SimulatedAnnealing,简称SA)是一种用于解决优化问题
- Cplex详解---ChatGPT4o作答
部分分式
算法
CPLEX是由IBM开发的一个广泛应用的高性能数学优化求解器,它被广泛用于解决线性规划(LP)、混合整数规划(MIP)、二次规划(QP)、二次约束规划(QCP)等优化问题。CPLEX在工业界和学术界都得到了广泛的应用,特别是在供应链管理、生产调度、能源管理、金融建模、物流等领域。1.CPLEX的主要特点高性能CPLEX是商业优化领域的领军者之一,能够高效处理大规模的优化问题。它使用先进的求解算法,
- 蚁群算法是一种模拟蚂蚁觅食行为的优化算法,适合用于解决旅行商问题(TSP)
potato_potato_123
MATLAB编程和仿真算法蚁群算法MATLAB旅行商问题
蚁群算法是一种模拟蚂蚁觅食行为的优化算法,适合用于解决旅行商问题(TSP)。以下是使用MATLAB实现蚁群算法解决50个城市TSP问题的代码:代码说明:城市坐标生成:利用rand(numCities,2)随机生成50个城市的坐标,接着算出城市之间的距离矩阵。蚁群算法参数设置:对蚂蚁数量、迭代次数、信息素重要程度因子、启发式因子、信息素挥发因子以及信息素增加强度系数等参数进行设置。信息素矩阵初始化:
- 《考虑阶梯式碳交易机制与电制氢的综合能源系统热电优化》MATLAB代码复现和仿真分析,《考虑阶梯式碳交易与电制氢综合能源系统优化研究》
pzxlzPFNN
能源matlab开发语言
MATLAB代码:考虑阶梯式碳交易机制与电制氢的综合能源系统热电优化关键词:碳交易电制氢阶梯式碳交易综合能源系统热电优化参考文档:《考虑阶梯式碳交易机制与电制氢的综合能源系统热电优化》基本复现仿真平台:MATLAB+CPLEX主要内容:代码主要做的是一个考虑阶梯式碳交易机制的电热综合能源系统优化调度研究,考虑综合能源系统参与碳交易市场,引入引入阶梯式碳交易机制引导IES控制碳排放,接着细化电转气(
- python求解混合整数规划_如何用python结合cplex求解混合整数规划问题
weixin_39647734
python求解混合整数规划
展开全部第一步:注册IBMid账号第二步:下载相关系统的e69da5e6ba9062616964757a686964616f31333363396432CPLEX(windows/linux/mac)这里需要系统中安装有JAVA,选择openwithJavawebstartlauncher(需要下载JAVA),打开后就开始进入下载页面。补充JAVA安装:备注:JAVA可以通过rpm包安装,或者是b
- 论文阅读-Quantum Annealing and Graph Neural Networks for Solving TSP with QUBO
酒饮微醉-
论文阅读
Q:这篇论文试图解决什么问题?A:这篇论文探讨了如何应用量子退火(QuantumAnnealing,QA)算法和图神经网络(GraphNeuralNetworks,GNNs)解决旅行商问题(TravellingSalesmanProblem,TSP)。TSP是一个经典的组合优化问题,它要求在给定的加权图中找到一条经过所有顶点恰好一次并返回起始点的最短路径。这个问题在实际应用中非常广泛,如物流、电子
- 禁忌搜索(TS) —— 理论、案例与交互式 GUI 实现
闲人编程
控制与系统优化算法实战邻域搜索TS禁忌表局部搜索记忆机制禁忌搜索python
目录禁忌搜索(TS)——理论、案例与交互式GUI实现一、引言二、禁忌搜索基本原理2.1算法背景2.2算法核心思想三、数学模型与算法流程3.1数学描述3.2算法流程四、优缺点分析4.1优点4.2缺点五、典型案例分析5.1案例一:旅行商问题(TSP)5.1.1案例描述5.1.2分析结论5.2案例二:生产调度问题5.2.1案例描述5.2.2分析结论5.3案例三:控制参数优化5.3.1案例描述5.3.2分
- 【Matlab】-- 基于MATLAB的美赛常用多种算法
电科_银尘
Matlab程序matlab算法数学建模
文章目录文章目录01内容概要02各种算法基本原理03部分代码04代码下载01内容概要本资料集合了多种数学建模和优化算法的常用代码资源,旨在为参与美国大学生数学建模竞赛(MCM/ICM,简称美赛)的参赛者提供实用的编程工具和算法实现。这些算法包括BP神经网络、CT图像重建、Floyd算法、Topsis算法、层次分析法、分支定界法、灰色预测、粒子群算法、模拟退火算法(特别适用于TSP和背包问题)、人口
- 量子边缘计算:当Wasm遇见量子退火机——解锁组合优化问题的终极加速方案
Eqwaak00
分布式系统设计实战量子计算python大数据自动化
一、引言:组合优化问题的挑战与机遇在物流调度、金融投资、芯片设计等领域,组合优化问题(CombinatorialOptimization)因其高复杂度和NP-Hard特性,一直是学术界和工业界的核心挑战。例如,一个包含100个城市的旅行商问题(TSP),其可能的路径组合高达1015510155种,即使用超级计算机也需要数年才能穷举所有解。传统启发式算法(如遗传算法、模拟退火)虽能提供近似解,但面对
- 使用CPLEX进行C++优化建模:从入门到精通
m0_57781768
c++java开发语言
使用CPLEX进行C++优化建模:从入门到精通前言CPLEX是IBM开发的一款强大的数学编程求解器,广泛应用于线性规划(LP)、混合整数规划(MIP)和约束规划(CP)等领域。它具有高效的求解能力和灵活的建模功能,是优化领域的重要工具之一。本文将详细介绍如何在C++中使用CPLEX进行优化建模,从基本概念到高级应用,结合具体实例展示其强大功能。通过这篇文章,读者将能够深入理解CPLEX的使用方法,
- 禁忌搜索算法求解考虑二维装箱的车辆路径问题
eternal1995
数学建模算法启发式算法
作者简介:本人擅长运筹优化建模及算法设计,包括各类车辆路径问题、生产车间调度、二三维装箱问题,熟悉CPLEX和gurobi求解器微信公众号:运筹优化与学习如有运筹优化相关建模或代码定制需求,可通过微信公众号联系我们前言之前和大家介绍了二维装箱问题、考虑二维装箱的车辆路径问题(2L-VRP),本篇推文算是前几篇推文的综合体,将介绍如何用禁忌搜索算法求解考虑二维装箱的车辆路径问题。禁忌搜索算法简介禁忌
- GUROBI之如何快速定位模型infeasible的原因
吃面包的快乐小狗
python数学建模
今天在用GUROBI写EVRPTW问题的模型时,遇到了很多问题参考:github上的一个用cplex来求解的paper:TheElectricVehicle-RoutingProblemwithTimeWindowsandRechargingStations(informs.org)code:E-VRPTW/E-VRPTW.modatmain·jmanzolli/E-VRPTW(github.co
- 利用模型输出,解决Yalmip建模+Cplex求解的约束出错问题
eeeecj_23
优化求解matlabmatlab
在进行优化求解过程中,难免会遇到这种情况:Row‘c373’infeasible,allentriesatimpliedbounds.那么应该怎么办呢?当用Yalmip建模+Cplex求解过程中,由于Yalmip的建模方式与Cplex有一定的不同,如图:saveampl(constraint,object,'mymodel');得到结果为:从图中可知,由于没有准确的行编号,利用其对Cplex求解过
- C++调用CPLEX踩过的小坑~
blackms1023
c++
最近在使用VisualStudio2015调用CPLEX进行一些基础问题的求解,初学小白,完全没经验,遇到N多问题,踩了好多坑,在此分享一下!希望可以给后其他研究者提供一neinei学习的经验!1.关于CPLEX中默认变量的问题CPLEX中默认变量为非负值,故在实际编码过程中如若不为变量指定下界为负无穷,且变量存在负值情况,则会出现计算数据错误的情况。具体解决方法就是在初始化的过程中,为其指定一个
- JAVA访问调用python接口
不秃头的小刘
pythonflask开发语言java
因为工作需要,用到python,做cplex模型计算,研究了一下如何java调用python接口,并传输接受数据.首先你需要安装好python环境,之后导入flask包.这点就不多赘述了,参考网上很多教程都有.接下来写python脚本接口#coding:utf-8fromflaskimportFlask,request,jsonify,url_for,redirect#创建Flask的应用程序#_
- MATLAB - 遗传算法(GA)求解旅行商问题(TSP)
kuan_li_lyg
MATLAB机器人与控制系统应用matlab算法人工智能遗传算法GA旅行商问题
系列文章目录文章目录系列文章目录前言一、旅行商问题(TSP)二、MATLAB步骤1.引入库2.为自定义数据类型定制遗传算法3.旅行商问题所需函数4.设置遗传算法选项前言这个例子展示了如何使用遗传算法来最小化使用自定义数据类型的函数。对遗传算法进行了定制化处理以解决旅行商问题。一、旅行商问题(TSP)旅行推销员问题(英语:Travellingsalesmanproblem,TSP)是这样一个问题:给
- MATLAB代码:多种调度模式下的光储电站经济性最优储能容量配置分析
HdhyBhJbF
matlab算法大数据
MATLAB代码:多种调度模式下的光储电站经济性最优储能容量配置分析关键词:光储电站优化配置经济性分析参考文档:《多种调度模式下的光储电站经济性最优储能容量配置分析》仅参考仿真平台:MATLAByalmip+cplex+mosek主要内容:代码主要做的是一个光储电站经济最优储能容量配置的问题,对光储电站中储能的容量进行优化,以实现经济效益的最大化。光储电站的调度模式选为联络线调整模式,目标函数中考
- 基于禁忌搜索算法的TSP问题最优路径搜索matlab仿真
软件算法开发
MATLAB程序开发#路线规划matlab禁忌搜索算法TSP最优路径搜索
目录1.程序功能描述2.测试软件版本以及运行结果展示3.核心程序4.本算法原理5.完整程序1.程序功能描述基于禁忌搜索算法的TSP问题最优路径搜索,旅行商问题(TSP)是一个经典的组合优化问题。其起源可以追溯到19世纪初,最初是在物流配送、线路规划等实际场景中被提出。简单来说,给定一组城市和城市之间的距离,旅行商需要从一个城市出发,访问每个城市恰好一次,最后回到起始城市,目标是找到总路程最短的路线
- 蚁群算法 (Ant Colony Optimization) 算法详解及案例分析
闲人编程
控制与系统优化算法22讲算法蚂蚁觅食行为组合优化旅行商问题车辆路径问题ACO蚁群算法
蚁群算法(AntColonyOptimization)算法详解及案例分析目录蚁群算法(AntColonyOptimization)算法详解及案例分析1.引言2.蚁群算法(ACO)算法原理2.1蚂蚁觅食行为2.2算法步骤2.3数学公式3.蚁群算法的优势与局限性3.1优势3.2局限性4.案例分析4.1案例1:旅行商问题(TSP)4.1.1问题描述4.1.2代码实现4.1.3流程图4.1.4优化曲线4.
- 基于遗传算法的城市旅行问题(TSP)求解
NovakG_
深度学习python算法深度学习神经网络
1.遗传算法背景介绍遗传算法是一种基于生物进化论中的自然选择和遗传机制的优化算法,模拟了生物进化过程以搜索最优解。通过仿真染色体的交叉、变异等操作,遗传算法将求解过程转换为类似生物进化的迭代运算。该算法在解决复杂的组合优化问题时,通常比常规优化算法更高效,且具有广泛应用,包括组合优化、机器学习、信号处理、自适应控制和人工生命等领域2.遗传算法基本解题思路遗传算法的设计思路主要受到大自然中生物体进化
- 运筹学——图论与最短距离(Python实现)(2),2024年最新Python高级面试framework
m0_60575487
2024年程序员学习图论python面试
适用于wij≥0,给出了从vs到任意一个点vj的最短路。Dijkstra算法是在1959年提出来的。目前公认,在所有的权wij≥0时,这个算法是寻求最短路问题最好的算法。并且,这个算法实际上也给出了寻求从一个始定点vs到任意一个点vj的最短路。2案例1——贪心算法实现==============2.1旅行商问题(TSP)**旅行商问题(TravelingSalesmanProblem,TSP)**
- python实现蚁群算法
孺子牛 for world
python算法开发语言
蚁群算法(AntColonyOptimization,ACO)是一种模拟蚂蚁觅食行为的启发式算法,常用于解决优化问题,如旅行商问题(TSP)、调度问题等。这里,将提供一个简化的蚁群算法实现,用于解决旅行商问题(TSP)。蚁群算法(ACO)解决TSP问题的基本步骤:初始化:设置蚂蚁数量、信息素挥发系数、信息素增加强度系数等参数,初始化信息素矩阵。构建解:每只蚂蚁随机选择起点,根据信息素浓度和启发式信
- 路径优化算法 | 基于蚁群的城市路径优化算法应用及其Matlab实现
算法如诗
路径优化算法(PathOptimization)算法matlab路径优化算法
蚁群算法(AntColonyOptimization,ACO)是一种模拟自然界中蚂蚁觅食行为的优化算法,用于解决如旅行商问题(TSP)等组合优化问题。在蚁群算法中,每只蚂蚁在搜索路径时都会释放信息素,并根据信息素浓度和其他启发式信息来选择下一个节点。随着时间的推移,较短的路径上累积的信息素会更多,从而吸引更多的蚂蚁,最终找到最优路径。在城市路径优化问题中,蚁群算法可以用于找到连接多个城市的最短路径
- 速读-张量流处理器(TSP)
Reacubeth
徐奕的专栏机器学习人工智能体系结构深度学习
Paper:Abts,Dennis,etal.“Thinkfast:atensorstreamingprocessor(TSP)foracceleratingdeeplearningworkloads.”2020ACM/IEEE47thAnnualInternationalSymposiumonComputerArchitecture(ISCA).IEEE,2020.简介本文介绍了一种名为张量流处
- 蚁群算法实现
qq_51497433
算法
蚁群算法(AntColonyOptimization,ACO)是一种模拟蚂蚁觅食行为的启发式搜索算法,常用于解决组合优化问题,如旅行商问题(TSP)、图的最短路径问题等。在MATLAB中实现蚁群算法,你需要遵循以下基本步骤:初始化参数:确定蚁群的规模、信息素的挥发系数、信息素的重要程度、启发式因子的重要程度等。初始化信息素矩阵:通常为每条路径上的信息素赋予相同的初始值。构建蚁群循环:在每一次迭代中
- 解读Servlet原理篇二---GenericServlet与HttpServlet
周凡杨
javaHttpServlet源理GenericService源码
在上一篇《解读Servlet原理篇一》中提到,要实现javax.servlet.Servlet接口(即写自己的Servlet应用),你可以写一个继承自javax.servlet.GenericServletr的generic Servlet ,也可以写一个继承自java.servlet.http.HttpServlet的HTTP Servlet(这就是为什么我们自定义的Servlet通常是exte
- MySQL性能优化
bijian1013
数据库mysql
性能优化是通过某些有效的方法来提高MySQL的运行速度,减少占用的磁盘空间。性能优化包含很多方面,例如优化查询速度,优化更新速度和优化MySQL服务器等。本文介绍方法的主要有:
a.优化查询
b.优化数据库结构
- ThreadPool定时重试
dai_lm
javaThreadPoolthreadtimertimertask
项目需要当某事件触发时,执行http请求任务,失败时需要有重试机制,并根据失败次数的增加,重试间隔也相应增加,任务可能并发。
由于是耗时任务,首先考虑的就是用线程来实现,并且为了节约资源,因而选择线程池。
为了解决不定间隔的重试,选择Timer和TimerTask来完成
package threadpool;
public class ThreadPoolTest {
- Oracle 查看数据库的连接情况
周凡杨
sqloracle 连接
首先要说的是,不同版本数据库提供的系统表会有不同,你可以根据数据字典查看该版本数据库所提供的表。
select * from dict where table_name like '%SESSION%';
就可以查出一些表,然后根据这些表就可以获得会话信息
select sid,serial#,status,username,schemaname,osuser,terminal,ma
- 类的继承
朱辉辉33
java
类的继承可以提高代码的重用行,减少冗余代码;还能提高代码的扩展性。Java继承的关键字是extends
格式:public class 类名(子类)extends 类名(父类){ }
子类可以继承到父类所有的属性和普通方法,但不能继承构造方法。且子类可以直接使用父类的public和
protected属性,但要使用private属性仍需通过调用。
子类的方法可以重写,但必须和父类的返回值类
- android 悬浮窗特效
肆无忌惮_
android
最近在开发项目的时候需要做一个悬浮层的动画,类似于支付宝掉钱动画。但是区别在于,需求是浮出一个窗口,之后边缩放边位移至屏幕右下角标签处。效果图如下:
一开始考虑用自定义View来做。后来发现开线程让其移动很卡,ListView+动画也没法精确定位到目标点。
后来想利用Dialog的dismiss动画来完成。
自定义一个Dialog后,在styl
- hadoop伪分布式搭建
林鹤霄
hadoop
要修改4个文件 1: vim hadoop-env.sh 第九行 2: vim core-site.xml <configuration> &n
- gdb调试命令
aigo
gdb
原文:http://blog.csdn.net/hanchaoman/article/details/5517362
一、GDB常用命令简介
r run 运行.程序还没有运行前使用 c cuntinue 
- Socket编程的HelloWorld实例
alleni123
socket
public class Client
{
public static void main(String[] args)
{
Client c=new Client();
c.receiveMessage();
}
public void receiveMessage(){
Socket s=null;
BufferedRea
- 线程同步和异步
百合不是茶
线程同步异步
多线程和同步 : 如进程、线程同步,可理解为进程或线程A和B一块配合,A执行到一定程度时要依靠B的某个结果,于是停下来,示意B运行;B依言执行,再将结果给A;A再继续操作。 所谓同步,就是在发出一个功能调用时,在没有得到结果之前,该调用就不返回,同时其它线程也不能调用这个方法
多线程和异步:多线程可以做不同的事情,涉及到线程通知
&
- JSP中文乱码分析
bijian1013
javajsp中文乱码
在JSP的开发过程中,经常出现中文乱码的问题。
首先了解一下Java中文问题的由来:
Java的内核和class文件是基于unicode的,这使Java程序具有良好的跨平台性,但也带来了一些中文乱码问题的麻烦。原因主要有两方面,
- js实现页面跳转重定向的几种方式
bijian1013
JavaScript重定向
js实现页面跳转重定向有如下几种方式:
一.window.location.href
<script language="javascript"type="text/javascript">
window.location.href="http://www.baidu.c
- 【Struts2三】Struts2 Action转发类型
bit1129
struts2
在【Struts2一】 Struts Hello World http://bit1129.iteye.com/blog/2109365中配置了一个简单的Action,配置如下
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configurat
- 【HBase十一】Java API操作HBase
bit1129
hbase
Admin类的主要方法注释:
1. 创建表
/**
* Creates a new table. Synchronous operation.
*
* @param desc table descriptor for table
* @throws IllegalArgumentException if the table name is res
- nginx gzip
ronin47
nginx gzip
Nginx GZip 压缩
Nginx GZip 模块文档详见:http://wiki.nginx.org/HttpGzipModule
常用配置片段如下:
gzip on; gzip_comp_level 2; # 压缩比例,比例越大,压缩时间越长。默认是1 gzip_types text/css text/javascript; # 哪些文件可以被压缩 gzip_disable &q
- java-7.微软亚院之编程判断俩个链表是否相交 给出俩个单向链表的头指针,比如 h1 , h2 ,判断这俩个链表是否相交
bylijinnan
java
public class LinkListTest {
/**
* we deal with two main missions:
*
* A.
* 1.we create two joined-List(both have no loop)
* 2.whether list1 and list2 join
* 3.print the join
- Spring源码学习-JdbcTemplate batchUpdate批量操作
bylijinnan
javaspring
Spring JdbcTemplate的batch操作最后还是利用了JDBC提供的方法,Spring只是做了一下改造和封装
JDBC的batch操作:
String sql = "INSERT INTO CUSTOMER " +
"(CUST_ID, NAME, AGE) VALUES (?, ?, ?)";
- [JWFD开源工作流]大规模拓扑矩阵存储结构最新进展
comsci
工作流
生成和创建类已经完成,构造一个100万个元素的矩阵模型,存储空间只有11M大,请大家参考我在博客园上面的文档"构造下一代工作流存储结构的尝试",更加相信的设计和代码将陆续推出.........
竞争对手的能力也很强.......,我相信..你们一定能够先于我们推出大规模拓扑扫描和分析系统的....
- base64编码和url编码
cuityang
base64url
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.StringWriter;
import java.io.UnsupportedEncodingException;
- web应用集群Session保持
dalan_123
session
关于使用 memcached 或redis 存储 session ,以及使用 terracotta 服务器共享。建议使用 redis,不仅仅因为它可以将缓存的内容持久化,还因为它支持的单个对象比较大,而且数据类型丰富,不只是缓存 session,还可以做其他用途,一举几得啊。1、使用 filter 方法存储这种方法比较推荐,因为它的服务器使用范围比较多,不仅限于tomcat ,而且实现的原理比较简
- Yii 框架里数据库操作详解-[增加、查询、更新、删除的方法 'AR模式']
dcj3sjt126com
数据库
public function getMinLimit () { $sql = "..."; $result = yii::app()->db->createCo
- solr StatsComponent(聚合统计)
eksliang
solr聚合查询solr stats
StatsComponent
转载请出自出处:http://eksliang.iteye.com/blog/2169134
http://eksliang.iteye.com/ 一、概述
Solr可以利用StatsComponent 实现数据库的聚合统计查询,也就是min、max、avg、count、sum的功能
二、参数
- 百度一道面试题
greemranqq
位运算百度面试寻找奇数算法bitmap 算法
那天看朋友提了一个百度面试的题目:怎么找出{1,1,2,3,3,4,4,4,5,5,5,5} 找出出现次数为奇数的数字.
我这里复制的是原话,当然顺序是不一定的,很多拿到题目第一反应就是用map,当然可以解决,但是效率不高。
还有人觉得应该用算法xxx,我是没想到用啥算法好...!
还有觉得应该先排序...
还有觉
- Spring之在开发中使用SpringJDBC
ihuning
spring
在实际开发中使用SpringJDBC有两种方式:
1. 在Dao中添加属性JdbcTemplate并用Spring注入;
JdbcTemplate类被设计成为线程安全的,所以可以在IOC 容器中声明它的单个实例,并将这个实例注入到所有的 DAO 实例中。JdbcTemplate也利用了Java 1.5 的特定(自动装箱,泛型,可变长度
- JSON API 1.0 核心开发者自述 | 你所不知道的那些技术细节
justjavac
json
2013年5月,Yehuda Katz 完成了JSON API(英文,中文) 技术规范的初稿。事情就发生在 RailsConf 之后,在那次会议上他和 Steve Klabnik 就 JSON 雏形的技术细节相聊甚欢。在沟通单一 Rails 服务器库—— ActiveModel::Serializers 和单一 JavaScript 客户端库——&
- 网站项目建设流程概述
macroli
工作
一.概念
网站项目管理就是根据特定的规范、在预算范围内、按时完成的网站开发任务。
二.需求分析
项目立项
我们接到客户的业务咨询,经过双方不断的接洽和了解,并通过基本的可行性讨论够,初步达成制作协议,这时就需要将项目立项。较好的做法是成立一个专门的项目小组,小组成员包括:项目经理,网页设计,程序员,测试员,编辑/文档等必须人员。项目实行项目经理制。
客户的需求说明书
第一步是需
- AngularJs 三目运算 表达式判断
qiaolevip
每天进步一点点学习永无止境众观千象AngularJS
事件回顾:由于需要修改同一个模板,里面包含2个不同的内容,第一个里面使用的时间差和第二个里面名称不一样,其他过滤器,内容都大同小异。希望杜绝If这样比较傻的来判断if-show or not,继续追究其源码。
var b = "{{",
a = "}}";
this.startSymbol = function(a) {
- Spark算子:统计RDD分区中的元素及数量
superlxw1234
sparkspark算子Spark RDD分区元素
关键字:Spark算子、Spark RDD分区、Spark RDD分区元素数量
Spark RDD是被分区的,在生成RDD时候,一般可以指定分区的数量,如果不指定分区数量,当RDD从集合创建时候,则默认为该程序所分配到的资源的CPU核数,如果是从HDFS文件创建,默认为文件的Block数。
可以利用RDD的mapPartitionsWithInd
- Spring 3.2.x将于2016年12月31日停止支持
wiselyman
Spring 3
Spring 团队公布在2016年12月31日停止对Spring Framework 3.2.x(包含tomcat 6.x)的支持。在此之前spring团队将持续发布3.2.x的维护版本。
请大家及时准备及时升级到Spring
- fis纯前端解决方案fis-pure
zccst
JavaScript
作者:zccst
FIS通过插件扩展可以完美的支持模块化的前端开发方案,我们通过FIS的二次封装能力,封装了一个功能完备的纯前端模块化方案pure。
1,fis-pure的安装
$ fis install -g fis-pure
$ pure -v
0.1.4
2,下载demo到本地
git clone https://github.com/hefangshi/f